1
|
Mikhailova V, Grebenkina P, Selkov S, Sokolov D. JEG-3 Trophoblast Cells Influence ILC-like Transformation of NK Cells In Vitro. Int J Mol Sci 2025; 26:3687. [PMID: 40332223 PMCID: PMC12027805 DOI: 10.3390/ijms26083687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
The uterine decidua contains NK cells differing in their characteristics from classical NK cells, as well as other populations of innate lymphoid cells (ILCs). ILC differentiation depends on the active transcription factors: ILC1 is characterized by T-bet expression, ILC2 is defined by RORα and GATA3, ILC3 expresses RORγt and AhR. We analyzed in vitro the expression of transcription factors by NK cells in the presence of trophoblast cells and cytokines and changes in NK cell cytotoxic activity. We used NK-92 and JEG-3 cell lines, which we cocultured in the presence of IFNγ, IL-10, IL-15, and TGFβ. Then, cells were treated with antibodies to AhR, Eomes, GATA-3, RORα, RORγt, and T-bet and were analyzed. We determined NK cell cytotoxicity towards K562 cells. To characterize the functional state of trophoblast cells, we estimated their secretion of TGFβ and βhCG. We showed that in the presence of trophoblasts, the expression of the classical NK cell transcription factors-Eomes, T-bet, as well as RORα, regulating ILC2 differentiation, and AhR, participating in NCR+ ILC3 formation-decreased in NK cells. RORγt expression typical for NCR- ILC3 remained unchanged. IFNγ inhibited AhR expression. IL-10 stimulated an increase in the number of T-bet+ ILC1-like cells. Both IL-10 and IFNγ suppressed RORα expression by NK cells and stimulated TGFβ secretion by trophoblasts. After coculture with trophoblast cells, NK cells reduced their cytotoxicity. These results indicated trophoblast cell influence on the acquisition of ILC1 and ILC3 characteristics by NK cells.
Collapse
Affiliation(s)
- Valentina Mikhailova
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Department of Immunology, Federal State Budgetary Educational Institution of Higher Education, First St. Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
| | - Polina Grebenkina
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Sergey Selkov
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Department of Immunology, Federal State Budgetary Educational Institution of Higher Education, First St. Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
| | - Dmitry Sokolov
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Department of Immunology, Federal State Budgetary Educational Institution of Higher Education, First St. Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| |
Collapse
|
2
|
Kirkham MN, Cooper C, Broberg E, Robertson P, Clarke D, Pickett BE, Bikman B, Reynolds PR, Arroyo JA. Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms. Cells 2024; 13:1009. [PMID: 38920640 PMCID: PMC11201565 DOI: 10.3390/cells13121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Exposure to cigarette smoke is known to induce disease during pregnancy. Recent evidence showed that exposure to secondhand smoke (SHS) negatively impacts fetal and placental weights, leading to the development of intrauterine growth restriction (IUGR). Electronic cigarettes (eCigs) represent a phenomenon that has recently emerged, and their use is also steadily rising. Even so, the effects of SHS or eCigs during gestation remain limited. In the present study, we wanted to characterize the effects of SHS or eCig exposure at two different important gestational points during mouse pregnancy. C57/Bl6 mice were exposed to SHS or eCigs via a nose-only delivery system for 4 days (from 14.5 to 17.5 gestational days (dGA) or for 6 days (from 12.5 dGA to 17.5 dGA)). At the time of necropsy (18.5 dGA), placental and fetal weights were recorded, maternal blood pressure was determined, and a dipstick test to measure proteinuria was performed. Placental tissues were collected, and inflammatory molecules in the placenta were identified. Treatment with SHS showed the following: (1) a significant decrease in placental and fetal weights following four days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. Treatment with eCigs showed the following: (1) a significant decrease in placental weight and fetal weight following four or six days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. We also observed different inflammatory markers associated with the development of IUGR or PE. We conclude that the detrimental effects of SHS or eCig treatment coincide with the length of maternal exposure. These results could be beneficial in understanding the long-term effects of SHS or eCig exposure in the development of placental diseases.
Collapse
Affiliation(s)
- Madison N. Kirkham
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Christian Cooper
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Emily Broberg
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Peter Robertson
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Derek Clarke
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Benjamin Bikman
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (E.B.)
| |
Collapse
|
3
|
Li C, Tian Y, Dougarem D, Sun L, Zhong Z. Systemic inflammatory regulators and preeclampsia: a two-sample bidirectional Mendelian randomization study. Front Genet 2024; 15:1359579. [PMID: 38586585 PMCID: PMC10995280 DOI: 10.3389/fgene.2024.1359579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Background Systemic inflammatory regulators have been associated with preeclampsia (PE) during pregnancy; however, there is inconsistent evidence from animal models and observational results. Methods Using summary data from genome-wide association studies (GWASs), we performed a bidirectional Mendelian randomization (MR) analysis of two samples of systemic inflammatory regulators (n = 8,186) and PE (n = 267,242) individuals of European ancestry. As our primary analysis, we used the random-effects inverse-variance weighted (IVW) approach. Sensitivity and pleiotropy analyses were conducted using the MR-Egger method, weighted median, MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and Cochran's Q test. Results The results indicate that there is a correlation between a higher circulating level of tumor necrosis factor alpha (TNF-α) and interleukin-9 (IL-9) and an increased risk of PE (odds ratio [OR] = 1.32, 95% confidence interval [CI] = 1.09-1.60, p = 0.004 and OR = 1.28, 95% CI: 1.02-1.62, p = 0.033, respectively). Conversely, lower levels of stem cell growth factor beta (SCGF-β) (OR = 0.89, 95% CI: 0.80-0.99, p = 0.027) and interleukin-5 (IL-5) (OR = 0.80, 95% CI: 0.65-0.98, p = 0.030) are linked to an increased risk of PE. The macrophage migration inhibitory factor (MIF) is the downstream inflammatory regulator of PE, according to reverse magnetic resonance imaging studies. Conclusion Our study suggests that SCGF-β, IL-5, IL-9, and TNF-α causally affect the PE risk, while PE is causally associated with MIF. Further studies are needed to validate these biomarkers in managing PE.
Collapse
Affiliation(s)
- Chu Li
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yishu Tian
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Djouhayna Dougarem
- Hospital of Obstetrics and Gynecology, Zhejiang University School of Medicine, Hangzhou, China
| | - Litao Sun
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zixing Zhong
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Cui Y, Wu S, Liu K, Zhao H, Ma B, Gong L, Zhou Q, Li X. Extra villous trophoblast-derived PDL1 can ameliorate macrophage inflammation and promote immune adaptation associated with preeclampsia. J Reprod Immunol 2024; 161:104186. [PMID: 38134680 DOI: 10.1016/j.jri.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Severe preeclampsia (sPE) is a systemic syndrome that may originate from chronic inflammation. Maintaining maternal-fetal hemostasis by the co-inhibitory molecule programmed death ligand 1 (PDL1) can be favorable for ameliorating inflammation from immune cells. Apart from programmed death 1 (PD1) expression, decidual macrophages (dMs) produce inflammatory cytokines, in response to cells which express PDL1. However, strong evidence is lacking regarding whether the PDL1/PD1 interaction between trophoblasts and decidual macrophages affects inflammation during sPE development. METHODS To determine whether the trophoblast-macrophage crosstalk via the PDL1/PD1 axis modulates the inflammatory response in sPE-like conditions, at first, maternal-fetal tissues from sPE and normal patients were collected, and the PDL1/PD1 distribution was analyzed by Western blot, immunohistochemistry/ immunofluorescence and flow cytometry. Next, a coculture system was established and flow cytometry was used to identify how PDL1 was involved in macrophage-related inflammation under hypoxic stress. Transcriptional analysis was performed to clarify the inflammation-associated pathway induced by the PDL1/PD1 interaction. Finally, the Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) mouse model was used to examine the effect of PDL1 on macrophage-related inflammation by measuring PE-like symptoms. RESULTS In maternal-fetal tissue from sPE patients, placental extravillous trophoblasts (EVTs) and dMs had a surprisingly increase of PDL1 and PD1 expression, respectively, accompanied by a higher percentage of CD68 +CD86 + dMs. In vitro experiments showed that trophoblast-derived PDL1 under hypoxia interacted with PD1 on CD14 +CD80 +macrophages, leading to suppression of inflammation through the TNFα-p38/NFκB pathway. Accordingly, the PE-like mouse model showed a reversal of PE-like symptoms and a reduced F4/80 + CD86 + macrophage percentage in the uterus in response to recombinant PDL1 protein administration, indicating the protective effect of PDL1. DISCUSSION Our results initially explained an immunological adaptation of trophoblasts under placental hypoxia, although this protection was insufficient. Our findings suggest the possible capacity of modulating PDL1 expression as a potential therapeutic strategy to target the inflammatory response in sPE.
Collapse
Affiliation(s)
- Yutong Cui
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Suwen Wu
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Ketong Liu
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Huanqiang Zhao
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Bo Ma
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Lili Gong
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Qiongjie Zhou
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| | - Xiaotian Li
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China; Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Guan S, Bai X, Ding J, Zhuang R. Circulating inflammatory cytokines and hypertensive disorders of pregnancy: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1297929. [PMID: 38035087 PMCID: PMC10687474 DOI: 10.3389/fimmu.2023.1297929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Background Hypertensive disorders of pregnancy (HDP) pose a significant risk to maternal and fetal well-being; however, the etiology and pathogenesis of HDP remain ambiguous. It is now widely acknowledged that inflammatory response and the immune system are closely related to HDP. Previous research has identified several inflammatory cytokines are associated with HDP. This study applied Mendelian randomization (MR) analysis to further assess causality. Methods Patients with HDP who participated in the MR analysis presented with four types of HDP: pre-eclampsia or eclampsia (PE); gestational hypertension (GH); pre-existing hypertension complicating pregnancy, childbirth and the puerperium (EH); and pre-eclampsia or poor fetal growth (PF). A two-sample MR analysis was used to analyze the data in the study. The causal relationship between exposure and outcome was analyzed with inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode methods, where IVW was the primary method employed. Results Our MR analysis demonstrated a reliable causative effect of Interleukin-9 (IL-9) and macrophage migration inhibitory factor (MIF) on reducing HDP risk, while macrophage inflammatory protein 1-beta (MIP1b), Interleukin-13 (IL-13), and Interleukin-16 (IL-16) were associated with promoting HDP risk. Conclusions This study demonstrated that IL-9, MIF, MIP1b, IL-13, and IL-16 may be cytokines associated with the etiology of HDP, and that a number of inflammatory cytokines are probably involved in the progression of HDP. Additionally, our study revealed that these inflammatory cytokines have causal associations with HDP and may likely be potential therapeutic targets for HDP.
Collapse
Affiliation(s)
| | | | | | - Rujin Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a 'three-in-one' perspective. Front Immunol 2023; 14:1198430. [PMID: 37350956 PMCID: PMC10282753 DOI: 10.3389/fimmu.2023.1198430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
A successful human pregnancy requires the maternal immune system to recognize and tolerate the semi-allogeneic fetus, allowing for appropriate trophoblasts invasion and protecting the fetus from invading pathogens. Therefore, maternal immunity is critical for the establishment and maintenance of pregnancy, especially at the maternal-fetal interface. Anatomically, the maternal-fetal interface has both maternally- and fetally- derived cells, including fetal originated trophoblasts and maternal derived immune cells and stromal cells. Besides, a commensal microbiota in the uterus was supposed to aid the unique immunity in pregnancy. The appropriate crosstalk between fetal derived and maternal originated cells and uterine microbiota are critical for normal pregnancy. Dysfunctional maternal-fetal interactions might be associated with the development of pregnancy complications. This review elaborates the latest knowledge on the interactions between trophoblasts and decidual immune cells, highlighting their critical roles in maternal-fetal tolerance and pregnancy development. We also characterize the role of commensal bacteria in promoting pregnancy progression. Furthermore, this review may provide new thought on future basic research and the development of clinical applications for pregnancy complications.
Collapse
Affiliation(s)
- Yonghong Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhaozhao Liu
- Reproduction Center, The Third Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
8
|
Deletion of ACLY Disrupts Histone Acetylation and IL-10 Secretion in Trophoblasts, Which Inhibits M2 Polarization of Macrophages: A Possible Role in Recurrent Spontaneous Abortion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5216786. [PMID: 35602106 PMCID: PMC9117018 DOI: 10.1155/2022/5216786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
Changes to macrophage polarization affect the local microenvironment of the placenta, resulting in pathological pregnancy diseases such as recurrent spontaneous abortion (RSA). Macrophages are in close contact with trophoblasts during placental development, and trophoblast-derived cytokines are important regulators of macrophage polarization and function. Histone acetylation can affect the expression and secretion of cytokines, and ATP citrate lyase (ACLY) is an important factor that regulates histone acetylation. The aim of this study was to investigate the effect of ACLY expression differences in trophoblast on macrophage polarization and its mechanism. Our data demonstrate that ACLY level in placental villi of patients with RSA is decreased, which may lead to the inhibition of histone acetylation in trophoblasts, thereby reducing the secretion of IL-10. Reduced IL-10 secretion activates endoplasmic reticulum stress in macrophages, thus inhibiting their M2 polarization.
Collapse
|
9
|
Bai K, Lee CL, Liu X, Li J, Cao D, Zhang L, Hu D, Li H, Hou Y, Xu Y, Kan ASY, Cheung KW, Ng EHY, Yeung WSB, Chiu PCN. Human placental exosomes induce maternal systemic immune tolerance by reprogramming circulating monocytes. J Nanobiotechnology 2022; 20:86. [PMID: 35180876 PMCID: PMC8857816 DOI: 10.1186/s12951-022-01283-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The maternal immune system needs to tolerate the semi-allogeneic fetus in pregnancy. The adaptation occurs locally at the maternal-fetal interface as well as systemically through the maternal circulation. Failure to tolerate the paternal antigens may result in pregnancy complications, such as pregnancy loss and pre-eclampsia. However, the mechanism that regulates maternal immune tolerance, especially at the systemic level, is still an enigma. Here we report that the first-trimester placenta-derived exosomes (pEXOs) contribute to maternal immune tolerance by reprogramming the circulating monocytes. RESULTS pEXOs predominantly target monocytes and pEXO-educated monocytes exhibit an immunosuppressive phenotype as demonstrated by reduced expression of marker genes for monocyte activation, T-cell activation and antigen-process/presentation at the transcriptomic level. They also have a greater propensity towards M2 polarization when compared to the monocytes without pEXO treatment. The inclusion of pEXOs in a monocyte-T-cell coculture model significantly reduces proliferation of the T helper cells and cytotoxic T cells and elevates the expansion of regulatory T cells. By integrating the microRNAome of pEXO and the transcriptomes of pEXO-educated monocytes as well as various immune cell functional assays, we demonstrate that the pEXO-derived microRNA miR-29a-3p promotes the expression of programmed cell death ligand-1, a well-known surface receptor that suppresses the adaptive immune system, by down-regulation of phosphatase and tensin homolog in monocytes. CONCLUSIONS This is the first report to show how human pEXO directly regulates monocyte functions and its molecular mechanism during early pregnancy. The results uncover the importance of pEXO in regulating the maternal systemic immune response during early pregnancy by reprogramming circulating monocytes. The study provides the basis for understanding the regulation of maternal immune tolerance to the fetal allograft.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China. .,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, Shenzhen, China.
| | - Xiaofeng Liu
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Dandan Cao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, Shenzhen, China
| | - Li Zhang
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Duanlin Hu
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hong Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yanqing Hou
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yue Xu
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anita S Y Kan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ka-Wang Cheung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China. .,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, Shenzhen, China.
| |
Collapse
|