1
|
Bello SF, Xu H, Bolaji UFO, Aloryi KD, Adeola AC, Gibril BAA, Popoola MA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Expression profiling and single nucleotide polymorphism of mitogen-activated protein kinase kinase kinase 8 MAP3K8 in white muscovy ducks (Cairina moschata). Gene 2025; 932:148901. [PMID: 39209181 DOI: 10.1016/j.gene.2024.148901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Agriculture Research Group, Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305-00100, Nairobi, Kenya
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Umar-Faruq Olayinka Bolaji
- Department of Animal Production, College of Food Science and Agriculture King Saud University, Riyadh, Saudi Arabia
| | - Kelvin Dodzi Aloryi
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Adeniyi Charles Adeola
- Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 Yunnan, China
| | - Bahareldin Ali Abdalla Gibril
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Moshood Abiola Popoola
- Federal College of Animal Health and Production Technology, Moor Plantation, Apata, Ibadan, Nigeria; National Dairy Research Institute, Karnal, India
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
2
|
Li X, Zhang Z, Wang X, Lu L, Zhang Z, Zhang G, Min J, Shi Q, Lyu S, Chu Q, Qi X, Li H, Huang Y, Wang E. In Vitro Analysis of LPS-Induced miRNA Differences in Bovine Endometrial Cells and Study of Related Pathways. Animals (Basel) 2024; 14:3367. [PMID: 39682333 DOI: 10.3390/ani14233367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Lipopolysaccharide (LPS) is one of the main factors inducing endometritis in dairy cows. However, the specific pathogenesis of LPS-induced endometritis in dairy cows is not fully understood. The objective of this study was to establish an in vitro endometritis model using LPS-induced bovine endometrial epithelial (BEND) cells. BEND cells were treated with LPS of different concentrations and times. The cell-counting kit-8 (CCK-8) was used to detect the cell survival rate after LPS treatment, and quantitative real-time PCR (RT-qPCR) was used to detect the expression of control group and LPS-treated group of inflammatory factors interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α). The results showed that the survival rate of endometrial epithelial cells stimulated by 5 μg/mL LPS for 6 h was 75.13%, and the expression of inflammatory factors was significantly increased. Therefore, 5 μg/mL LPS for 6 h could be selected as a suitable model for the study of inflammation. In addition, miRNA sequencing and target gene prediction was performed on normal and LPS-treated BEND cells. Among twenty-one differentially expressed miRNAs, six miRNAs were selected and their expression levels were detected by RT-qPCR, which were consistent with the sequencing results. Twenty-one differentially expressed miRNAs collectively predicted 17,050 target genes. This study provides a theoretical basis for further investigation of the pathogenesis of endometritis.
Collapse
Affiliation(s)
- Xinmiao Li
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhihao Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangnan Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ligang Lu
- Bijie Academy of Agricultural Sciences, Bijie 551700, China
| | - Zijing Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Geyang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jia Min
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaoting Shi
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shijie Lyu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiuxia Chu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xingshan Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Zhumadian 463700, China
| | - Huimin Li
- Agricultural Comprehensive Administrative Law Enforcement Detachment of Zhengzhou, Zhengzhou 450044, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Eryao Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
3
|
Wang S, Liu R, Ren X, Sang M, Dong H, Wu Q, Li A. The bta-miR-22-3p can alleviate LPS-induced inflammatory response in yak endometrial epithelial cells by targeting KSR2. Microb Pathog 2024; 197:107090. [PMID: 39510361 DOI: 10.1016/j.micpath.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Bovine endometritis is a common reproductive system disease in dairy cows that leads to decreased milk production and reproductive performance, causing significant economic losses for farmers. Research has shown that microRNAs (miRNAs) play a significant role in regulating the expression of biological genes and are closely related to the occurrence of inflammation, including bta-miR-22-3p. However, the specific molecular mechanisms by which miRNAs regulate bovine endometritis remain unclear. To investigate the regulatory mechanism of bta-miR-22-3p in yak endometritis, uterine tissues were collected from three healthy bos grunniens and three bos grunniens with endometritis, approximately 21 days postpartum. Various methods were employed, including real-time quantitative polymerase chain reaction (RT-qPCR), Western blot (WB), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence (IF). The results demonstrated that overexpression of bta-miR-22-3p led to a significant decrease (P < 0.05) in factors related to the mitogen-activated protein kinase (MAPK) signaling pathway and associated inflammatory factors, such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (P38), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Furthermore, dual-luciferase assays confirmed that the kinase suppressor of the Ras 2 (KSR2) gene is a downstream target of bta-miR-22-3p. Overexpression of bta-miR-22-3p inhibited the expression of KSR2. When KSR2 was inhibited, the levels of MAPK signaling pathway-related factors and inflammation also significantly decreased (P < 0.05). Thus, bta-miR-22-3p suppresses the activation of the MAPK signaling pathway through the inhibition of KSR2, resulting in a reduction of inflammatory factors. In conclusion, this study demonstrated that bta-miR-22-3p targets the KSR2 gene to alleviate LPS (Lipopolysaccharide)-induced inflammatory damage.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Clinical Veterinary Medicine, Animal Science College, Xizang Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Ruidong Liu
- Key Laboratory of Clinical Veterinary Medicine, Animal Science College, Xizang Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Xiaoli Ren
- Key Laboratory of Clinical Veterinary Medicine, Animal Science College, Xizang Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Mudan Sang
- Key Laboratory of Clinical Veterinary Medicine, Animal Science College, Xizang Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Hailong Dong
- Key Laboratory of Clinical Veterinary Medicine, Animal Science College, Xizang Agriculture and Animal Husbandry University, Linzhi, 860000, China.
| | - Qingxia Wu
- Key Laboratory of Clinical Veterinary Medicine, Animal Science College, Xizang Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Shaukat A, Hanif S, Shaukat I, Rajput SA, Shukat R, Huang SC, H Almutairi M, Shaukat S, Ali M, Hassan M, Kiani FA, Su RW. Up-regulation of inflammatory, oxidative stress, and apoptotic mediators via inflammatory, oxidative stress, and apoptosis-associated pathways in bovine endometritis. Microb Pathog 2024; 191:106660. [PMID: 38657710 DOI: 10.1016/j.micpath.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.
Collapse
Affiliation(s)
- Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sana Hanif
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, China
| | - Irfan Shaukat
- Department of Biochemistry, University of Narowal, Narowal, Pakistan
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Shadab Shaukat
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Mehboob Ali
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mubashar Hassan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|