1
|
Vavak M, Cihova I, Reichwalderova K, Vegh D, Dolezajova L, Slaninova M. Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players. Genes (Basel) 2025; 16:250. [PMID: 40149402 PMCID: PMC11942027 DOI: 10.3390/genes16030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The study aims to investigate potential differences in vertical jump performance between elite basketball and volleyball players before and after a standard training session, in comparison to a control group from the general population. The analysis focuses on the influence of selected gene polymorphisms that may contribute to variations in the assessed performance parameters. AIMS The aim was to investigate the influence of ACE (rs4646994), ACTN3 (rs1815739), PPARA rs4253778, HIF1A (rs11549465), and AMPD1 (rs17602729) genes polymorphisms on the combined effects of post-activation potentiation (PAP), post-activation performance enhancement (PAPE), and general adaptation syndrome (GAS), as reflected in vertical jump performance, in elite basketball and volleyball players compared to a control group from the general population. METHODS The effects of PAP at the beginning of the training load (acute exercise), and the combined influences of PAPE and GAS following the training load were evaluated using parameters measured by the OptoJump Next® system (Microgate, Bolzano, Italy). RESULTS A statistically significant (h, p < 0.05) negative effect of the CT genotype of the AMPD1 gene on jump height was observed in the group of athletes. The CT genotype of the AMPD1 gene negatively impacted on PAPE and GAS adaptive responses (ΔP, Δh, p < 0.001) also in the control group. A positive effect on the power during the active phase of the vertical jump was identified for the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene, both exclusively in the control group (ΔP, p < 0.05). CONCLUSION Our findings demonstrate that different gene polymorphisms exert variable influences on the combined effects of PAPE and GAS, as reflected in vertical jump parameters, depending on the participants' level of training adaptation.
Collapse
Affiliation(s)
- Miroslav Vavak
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Iveta Cihova
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Katarina Reichwalderova
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - David Vegh
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Ladislava Dolezajova
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Miroslava Slaninova
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
2
|
Bıçakçı B, Cięszczyk P, Humińska-Lisowska K. Genetic Determinants of Endurance: A Narrative Review on Elite Athlete Status and Performance. Int J Mol Sci 2024; 25:13041. [PMID: 39684752 PMCID: PMC11641144 DOI: 10.3390/ijms252313041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This narrative review explores the relationship between genetics and elite endurance athletes, summarizes the current literature, highlights some novel findings, and provides a physiological basis for understanding the mechanistic effects of genetics in sport. Key genetic markers include ACTN3 R577X (muscle fiber composition), ACE I/D (cardiovascular efficiency), and polymorphisms in PPARA, VEGFA, and ADRB2, influencing energy metabolism, angiogenesis, and cardiovascular function. This review underscores the benefits of a multi-omics approach to better understand the complex interactions between genetic polymorphisms and physiological traits. It also addresses long-standing issues such as small sample sizes in studies and the heterogeneity in heritability estimates influenced by factors like sex. Understanding the mechanistic relationship between genetics and endurance performance can lead to personalized training strategies, injury prevention, and improved health outcomes. Future studies should focus on standardized classification of sports, replication studies involving diverse populations, and establishing solid physiological associations between polymorphisms and endurance traits to advance the field of sports genetics.
Collapse
Affiliation(s)
| | | | - Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland; (B.B.); (P.C.)
| |
Collapse
|
3
|
Ferreira CP, Silvino VO, Trevisano RG, de Moura RC, Almeida SS, Pereira Dos Santos MA. Influence of genetic polymorphism on sports talent performance versus non-athletes: a systematic review and meta-analysis. BMC Sports Sci Med Rehabil 2024; 16:223. [PMID: 39482721 PMCID: PMC11529235 DOI: 10.1186/s13102-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Talented athletes exhibit remarkable skills and performance in their respective sports, setting them apart from their peers. It has been observed that genetic polymorphisms can influence variations in sports performance, leading to numerous studies aimed at validating genetic markers for identifying sports talents. This study aims to evaluate the potential contribution of genetic factors associated with athletic performance predisposition in identifying sports talents. METHODS A systematic review was conducted following the PRISMA framework, utilizing the PICO methodology to develop the research question. The search was limited to case-control studies published between 2003 and June 2024, and databases such as Medline, LILACS, WPRIM, IBECS, CUMED, VETINDEX, Web of Science, Science Direct, Scopus and Scielo were utilized. The STREGA tool was employed to assess the quality of the selected studies. RESULTS A total of 1,132 articles were initially identified, of which 119 studies were included in the review. Within these studies, 50 genes and 94 polymorphisms were identified, showing associations with sports talent characteristics such as endurance, strength, power, and speed. The most frequently mentioned genes were ACTN3 (27.0%) and ACE (11.3%). CONCLUSION The ACE I/D and ACTN3 R577X polymorphisms are frequently discussed in the literature. Although athletic performance may be influenced by different genetic polymorphisms, limitations exist in associating them with athletic performance across certain genotypes and phenotypes. Future research is suggested to investigate the influence of polymorphisms in elite athletes from diverse backgrounds and sports disciplines.
Collapse
Affiliation(s)
- Cirley Pinheiro Ferreira
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil.
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil.
| | - Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| | - Rebeca Gonçalves Trevisano
- Department of Obstetrician, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rayane Carvalho de Moura
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
| | - Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Anhanguera College of Guarulhos, Guarulhos, SP, Brazil
| | - Marcos Antonio Pereira Dos Santos
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| |
Collapse
|
4
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
5
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
6
|
Heinle JW, DiJoseph K, Sabag A, Oh S, Kimball SR, Keating S, Stine JG. Exercise Is Medicine for Nonalcoholic Fatty Liver Disease: Exploration of Putative Mechanisms. Nutrients 2023; 15:nu15112452. [PMID: 37299416 DOI: 10.3390/nu15112452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise remains a key component of nonalcoholic fatty liver disease (NAFLD) treatment. The mechanisms that underpin improvements in NAFLD remain the focus of much exploration in our attempt to better understand how exercise benefits patients with NAFLD. In this review, we summarize the available scientific literature in terms of mechanistic studies which explore the role of exercise training in modulating fatty acid metabolism, reducing hepatic inflammation, and improving liver fibrosis. This review highlights that beyond simple energy expenditure, the activation of key receptors and pathways may influence the degree of NAFLD-related improvements with some pathways being sensitive to exercise type, intensity, and volume. Importantly, each therapeutic target of exercise training in this review is also the focus of previous or ongoing drug development studies in patients with nonalcoholic steatohepatitis (NASH), and even when a regulatory-agency-approved drug comes to market, exercise will likely remain an integral component in the clinical management of patients with NAFLD and NASH.
Collapse
Affiliation(s)
- James Westley Heinle
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Kara DiJoseph
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Angelo Sabag
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sechang Oh
- Department of Physical Therapy, Faculty of Rehabilitation, R Professional University of Rehabilitation, Tsuchiura 300-0032, Ibaraki, Japan
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Shelley Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
7
|
de Sousa BRV, de Lima Tavares Toscano L, de Almeida Filho EJB, Sena KF, Costa MS, de Souza Cunha RC, de Souza Siqueira Quintans J, Heimfarth L, Marques ATB, da Silva DF, de Campos LFCC, Persuhn DC, Silva AS. Purple grape juice improves performance of recreational runners, but the effect is genotype dependent: a double blind, randomized, controlled trial. GENES & NUTRITION 2022; 17:9. [PMID: 35655124 PMCID: PMC9164373 DOI: 10.1186/s12263-022-00710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022]
Abstract
Background We examined the influence of superoxide dismutase 3 (SOD3) Arg213Gly and Peroxisome Proliferator-Activated α-Receptor (PPARα) 7G/C polymorphisms to a single dose of purple grape juice supplementation on time-to-exhaustion running test, redox balance and muscle damage in recreational runners. Methods Forty-seven male recreational runners performed a running test until exhaustion after supplementation with grape juice or a control drink. Serum total antioxidant capacity (TAC), malondialdehyde (MDA), plasma nitrite (NO), creatine kinase (CK) and lactate dehydrogenase (LDH) were measured pre and post exercise. Also, polymorphisms were analyzed in DNA extracted from the oral mucosa. Results Grape juice improved the time-to-exhaustion. When analyzed by genotype, the recreational runners with GG+CG genotypes of the SOD3 gene had greater time-to-exhaustion than the CC genotype, but was no different for the PAPRα gene. A slight difference was noted in TAC, since the CC genotype of the SOD3 gene showed higher TAC values in the post-exercise compared to the baseline and with pre-exercise, but these values did not increase compared to the CG+GG group, respectively. The SOD3 and PPARα genes were similar at all times for the other biochemical variables. Conclusion The ergogenic effect of grape juice was genotype-dependent for SOD3 Arg213Gly. However, biochemical redox balance markers did not explain this difference.
Collapse
|
8
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
9
|
Candidate Genes of Regulation of Skeletal Muscle Energy Metabolism in Athletes. Genes (Basel) 2021; 12:genes12111682. [PMID: 34828287 PMCID: PMC8625318 DOI: 10.3390/genes12111682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
All biological processes associated with high sports performance, including energy metabolism, are influenced by genetics. DNA sequence variations in such genes, single nucleotide variants (SNVs), could confer genetic advantages that can be exploited to achieve optimal athletic performance. Ignorance of these features can create genetic “barriers” that prevent professional athletes from pursuing a career in sports. Predictive Genomic DNA Profiling reveals single nucleotide variations (SNV) that may be associated with better suitability for endurance, strength and speed sports. (1) Background: To conduct a research on candidate genes associated with regulation of skeletal muscle energy metabolism among athletes. (2) Methods: We have searched for articles in SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed, e-LIBRARY databases for the period of 2010–2020 using keywords and keywords combinations; (4) Conclusions: Identification of genetic markers associated with the regulation of energy metabolism in skeletal muscles can help sports physicians and coaches develop personalized strategies for selecting children, teenagers and young adults for endurance, strength and speed sports (such as jogging, middle or long distance runs). However, the multifactorial aspect of sport performances, including impact of genetics, epigenetics, environment (training and etc.), is important for personalized strategies for selecting of athletes. This approach could improve sports performance and reduce the risk of sports injuries to the musculoskeletal system.
Collapse
|
10
|
Does the PPARA Intron 7 Gene Variant (rs4253778) Influence Performance in Power/Strength-Oriented Athletes? A Case-Control Replication Study in Three Cohorts of European Gymnasts. J Hum Kinet 2021; 79:77-85. [PMID: 34400988 PMCID: PMC8336554 DOI: 10.2478/hukin-2020-0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Athletic ability is influenced by several exogenous and endogenous factors including genetic component. Hundreds of gene variants have been proposed as potential genetic markers associated with fitness-related phenotypes as well as elite-level athletic performance. Among others, variants within the PPARA gene that code for the peroxisome proliferator activated receptor α are of potential interest. The main goal of the present study was to determine PPARA (G/C, rs4253778) genotype distribution among a group of Polish, Lithuanian and Italian international level male gymnasts and to compare our findings with those of previous research on the frequency of the PPARA intron 7 C allele/CC genotype in power/strength-oriented athletes. A total of 464 male subjects (147 gymnasts and 317 controls) from Poland (n = 203), Italy (n = 146) and Lithuania (n = 107) participated in the study. No statistically significant differences were found in any of the analyzed cohorts. However, a significantly higher frequency of the CC genotype of the PPARA rs4253778 polymorphism was observed when all gymnasts were pooled and compared with pooled control using a recessive model of inheritance (OR = 3.33, 95% CI = 1.18-10, p = 0.022). It is important to know that we investigated a relatively small sample of male European gymnasts and our results are limited only to male participants. Thus, it is necessary to validate our results in larger cohorts of athletes of different ethnicities and also in female gymnasts to find out whether there is a gender effect.
Collapse
|
11
|
Molecular Portrait of an Athlete. Diagnostics (Basel) 2021; 11:diagnostics11061095. [PMID: 34203902 PMCID: PMC8232626 DOI: 10.3390/diagnostics11061095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Sequencing of the human genome and further developments in "omics" technologies have opened up new possibilities in the study of molecular mechanisms underlying athletic performance. It is expected that molecular markers associated with the development and manifestation of physical qualities (speed, strength, endurance, agility, and flexibility) can be successfully used in the selection systems in sports. This includes the choice of sports specialization, optimization of the training process, and assessment of the current functional state of an athlete (such as overtraining). This review summarizes and analyzes the genomic, proteomic, and metabolomic studies conducted in the field of sports medicine.
Collapse
|
12
|
Ipekoglu G, Bulbul A, Cakir HI. A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. J Sports Med Phys Fitness 2021; 62:795-802. [PMID: 34028240 DOI: 10.23736/s0022-4707.21.12417-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Genetics has an important role in determining the athletic ability and endurance performance potential. This study aimed to investigate the variable results obtained from endurance athletes and control participants in terms of angiotensin-converting enzyme (ACE) and peroxisome proliferator-activated receptor alpha (PPARA) polymorphism distributions. METHODS Multiple electronic databases were investigated independently by two researchers. A meta-analysis was conducted on the association of ACE insertion/deletion (I/D) polymorphism and PPARA G/C polymorphisms with endurance athletes. Odds ratios (OR) and 95% confidence intervals (CI) were estimated. Twenty-six studies were identified for the ACE I/D for 2979 endurance athletes and 10048 control participants while seven studies were identified for PPARA G/C for 901 endurance athletes and 2292 control participants. RESULTS There was a significant difference in ACE genotype distribution between endurance athletes and control (II vs. ID+DD: OR=1.48; 95% CI=0.30-2.67; p=0.001). On the other hand, there was no a significant difference in PPARA G/C polymorphism genotype distribution between endurance athletes and control (GC+CC vs. GG: OR=0.93; 95% CI=-0.46-2.32; p=0.192; GC+GG vs CC: OR=0.62; 95% CI=-1.75-2.99; p=0.604). CONCLUSIONS The results have shown that ACE I/D polymorphism may be associated with endurance performance in sports and that the predominance of the ACE II genotype in a person may play an advantageous role in being an endurance athlete. However, this effect has not been observed in PPARA G/C polymorphism.
Collapse
Affiliation(s)
| | - Alpay Bulbul
- Faculty of Sports Sciences, Sinop University, Sinop, Turkey
| | - Halil I Cakir
- High School of Physical Education and Sports, Recep Tayyip Erdogan University, Rize, Turkey -
| |
Collapse
|
13
|
Petr M, Maciejewska-Skrendo A, Zajac A, Chycki J, Stastny P. Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator. Int J Mol Sci 2019; 21:E162. [PMID: 31881714 PMCID: PMC6981913 DOI: 10.3390/ijms21010162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Although the scientific literature regarding sports genomics has grown during the last decade, some genes, such as peroxisome proliferator activated receptors (PPARs), have not been fully described in terms of their role in achieving extraordinary sports performance. Therefore, the purpose of this systematic review was to determine which elite sports performance constraints are positively influenced by PPARs and their coactivators. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were used, with a combination of PPAR and sports keywords. RESULTS In total, 27 studies that referred to PPARs in elite athletes were included, where the Ala allele in PPARG rs1801282 was associated with strength and power elite athlete status in comparison to subelite athlete status. The C allele in PPARA rs4253778 was associated with soccer, and the G allele PPARA rs4253778 was associated with endurance elite athlete status. Other elite status endurance alleles were the Gly allele in PPARGC1A rs8192678 and the C allele PPARD rs2016520. CONCLUSIONS PPARs can be used for estimating the potential to achieve elite status in human physical performance in strength and power, team, and aerobic sports disciplines. Carrying specific PPAR alleles can provide a partial benefit to achieving elite sports status, but does not preclude achieving elite status if they are absent.
Collapse
Affiliation(s)
- Miroslav Petr
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic;
| | | | - Adam Zajac
- Department of Theory and Practice of Sport, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.Z.)
| | - Jakub Chycki
- Department of Theory and Practice of Sport, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.Z.)
| | - Petr Stastny
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic;
| |
Collapse
|
14
|
Maciejewska-Skrendo A, Buryta M, Czarny W, Król P, Stastny P, Petr M, Safranow K, Sawczuk M. The Polymorphisms of the Peroxisome-Proliferator Activated Receptors' Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose. J Clin Med 2019; 8:jcm8071043. [PMID: 31319591 PMCID: PMC6679124 DOI: 10.3390/jcm8071043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background: PPARα is a transcriptional factor that controls the expression of genes involved in fatty acid metabolism, including fatty acid transport, uptake by the cells, intracellular binding, and activation, as well as catabolism (particularly mitochondrial fatty acid oxidation) or storage. PPARA gene polymorphisms may be crucial for maintaining lipid homeostasis and in this way, being responsible for developing specific training-induced physiological reactions. Therefore, we have decided to check if post-training changes of body mass measurements as well as chosen biochemical parameters are modulation by the PPARA genotypes. Methods: We have examined the genotype and alleles’ frequencies (described in PPARA rs1800206 and rs4253778 polymorphic sites) in 168 female participants engaged in a 12-week training program. Body composition and biochemical parameters were measured before and after the completion of a whole training program. Results: Statistical analyses revealed that PPARA intron 7 rs4253778 CC genotype modulate training response by increasing low-density lipoproteins (LDL) and glucose concentration, while PPARA Leu162Val rs1800206 CG genotype polymorphism interacts in a decrease in high-density lipoproteins (HDL) concentration. Conclusions: Carriers of PPARA intron 7 rs4253778 CC genotype and Leu162Val rs1800206 CG genotype might have potential negative training-induced cholesterol and glucose changes after aerobic exercise.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Department of Molecular Biology, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Maciej Buryta
- Department of Molecular Biology, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Wojciech Czarny
- Department of Anatomy and Anthropology, Faculty of Physical Education, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Pawel Król
- Department of Anatomy and Anthropology, Faculty of Physical Education, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Petr Stastny
- Department of Sport Games, Faulty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic.
| | - Miroslav Petr
- Department of Sport Games, Faulty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Marek Sawczuk
- Unit of Physical Medicine, Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
15
|
Association between the PPARa and PPARGCA gene variations and physical performance in non-trained male adolescents. Mol Biol Rep 2018; 45:2545-2553. [PMID: 30324415 DOI: 10.1007/s11033-018-4422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
The purpose of the research was to examine if some genetic variations are associated with some endurance, power and speed performances (multi-stage 20-m shuttle run, standing broad jump, 20 m sprint test and Abalakov jump) in a group of 586 non-trained male adolescents (mean ± SD age: 13.20 ± 0.25 years). Polymorphisms in PPARa and PPARGC1A implicated in physical performance traits were analyzed. DNA was extracted and the samples were genotyped for PPARa and PPARGC1A polymorphisms by a PCR based method followed by gel electrophoresis. The discrepancies in the study phenotypes among variations of the PPARa and PPARGC1A polymorphisms were analyzed by one-way analysis of covariance (ANCOVA), after age, weight and height adjustment. To examine whether the genotype and allele frequencies between adolescents with high and low performances were different, we divided them into two groups: ≥ 90th and < 90th of the percentile. The genotype and allele frequencies between adolescents with high and low performances were compared with the Chi square test. Our analysis demonstrated the effects of the PPARa and PPARGC1A polymorphisms only on [Formula: see text] (p = 0.010 and p = 0.010 respectively). Also, we observed significant differences in PPARa and PPARGC1A genotypes (p = 0.034 and p = 0.024) or allele frequencies (p = 0.031 and p = 0.001) between groups for the multi-stage 20-m shuttle run test. Findings of this research suggest that both the PPARa and PPARGC1A polymorphisms are associated with estimating endurance-related phenotype and endurance capacity in male non-athletes adolescents.
Collapse
|
16
|
Miarka B, Brito CJ, Fukuda DH, Barros CC, Goulart C, Dal Bello F, Del Vecchio FB. Influence of ACTN3 R/X gene polymorphisms on racing strategy in rowing athletes. INT J PERF ANAL SPOR 2017. [DOI: 10.1080/24748668.2017.1416527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bianca Miarka
- Department of Physical Education, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ciro José Brito
- Department of Physical Education, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - David H. Fukuda
- Institute of Exercise Physiology and Wellness, University Central Florida, Orlando, FL, USA
| | | | - Cássia Goulart
- School Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Fábio Dal Bello
- Head of Physical Activity and Sports Science Master Program. Universidad Santo Tomás, Santiago, Chile
| | | |
Collapse
|
17
|
Batatinha HAP, Lima EA, Teixeira AAS, Souza CO, Biondo LA, Silveira LS, Lira FS, Rosa Neto JC. Association Between Aerobic Exercise and Rosiglitazone Avoided the NAFLD and Liver Inflammation Exacerbated in PPAR-α Knockout Mice. J Cell Physiol 2016; 232:1008-1019. [PMID: 27216550 DOI: 10.1002/jcp.25440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/20/2016] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the main liver diseases today, and may progress to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Some studies have shown the beneficial effects of aerobic exercise on reversing NAFLD. To verify whether chronic aerobic exercise improves the insulin resistance, liver inflammation, and steatohepatitis caused by a high fat diet (HF) and whether PPARα is involved in these actions. C57BL6 wild type (WT) and PPAR-α knockout (KO) mice were fed with a standard diet (SD) or HF during 12 weeks; the HF mice were trained on a treadmill during the last 8 weeks. Serum glucose and insulin tolerances, serum levels of aspartate aminotransferase, hepatic content of triacylglycerol, cytokines, gene expression, and protein expression were evaluated in all animals. Chronic exposure to HF diet increased triacylglycerol accumulation in the liver, leading to NAFLD, increased aminotransferase in the serum, increased peripheral insulin resistance, and higher adiposity index. Exercise reduced all these parameters in both animal genotypes. The liver lipid accumulation was not associated with inflammation; trained KO mice, however, presented a huge inflammatory response that was probably caused by a decrease in PPAR-γ expression. We conclude that exercise improved the damage caused by a HF independently of PPARα, apparently by a peripheral fatty acid oxidation in the skeletal muscle. We also found that the absence of PPARα together with exercise leads to a decrease in PPAR-γ and a huge inflammatory response. J. Cell. Physiol. 232: 1008-1019, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helena A P Batatinha
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Edson A Lima
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Alexandre A S Teixeira
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Camila O Souza
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Luana A Biondo
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Loreana S Silveira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Univer. Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Univer. Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - José C Rosa Neto
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Lopez-Leon S, Tuvblad C, Forero DA. Sports genetics: the PPARA gene and athletes' high ability in endurance sports. A systematic review and meta-analysis. Biol Sport 2015; 33:3-6. [PMID: 26985127 PMCID: PMC4786580 DOI: 10.5604/20831862.1180170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/25/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023] Open
Abstract
A meta-analysis was performed with the aim of re-evaluating the role of the peroxisome proliferator activated receptor alpha (PPARA) gene intron 7 G/C polymorphism (rs4253778) in athletes’ high ability in endurance sports. Design: A meta-analysis of case control studies assessing the association between the G/C polymorphisms of the PPARA gene and endurance sports was conducted. The Cochrane Review Manager software was used to compare the genotype and allele frequencies between endurance athletes and controls to determine whether a genetic variant is more common in athletes than in the general population. Five studies, encompassing 760 endurance athletes and 1792 controls, fulfilled our inclusion criteria. The pooled odds ratio (and confidence intervals, CIs) for the G allele compared to the C allele was 1.65 (95% CI 1.39-1.96). The pooled OR for the GG genotype compared to the GC genotype was 1.79 (95% CI 1.44-2.22), and for the GG genotype compared to the CC genotype 2.37 (95% CI 1.40-3.99). There was no evidence of heterogeneity (I2 =0%) or of publication bias. Athletes with high ability in endurance sports had a higher frequency of the GG genotype and G allele.
Collapse
Affiliation(s)
- S Lopez-Leon
- Novartis Pharmaceuticals Corporation, East Hanover NJ, USA
| | - C Tuvblad
- Department of Psychology, University of Southern California, USA; School of Law, Psychology and Social Work, Örebro University, Sweden
| | - D A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
19
|
Santos CGM, Pimentel-Coelho PM, Budowle B, de Moura-Neto RS, Dornelas-Ribeiro M, Pompeu FAMS, Silva R. The heritable path of human physical performance: from single polymorphisms to the "next generation". Scand J Med Sci Sports 2015; 26:600-12. [PMID: 26147924 DOI: 10.1111/sms.12503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
Human physical performance is a complex multifactorial trait. Historically, environmental factors (e.g., diet, training) alone have been unable to explain the basis of all prominent phenotypes for physical performance. Therefore, there has been an interest in the study of the contribution of genetic factors to the development of these phenotypes. Support for a genetic component is found with studies that shown that monozygotic twins were more similar than were dizygotic twins for many physiological traits. The evolution of molecular techniques and the ability to scan the entire human genome enabled association of several genetic polymorphisms with performance. However, some biases related to the selection of cohorts and inadequate definition of the study variables have complicated the already difficult task of studying such a large and polymorphic genome, often resulting in inconsistent results about the influence of candidate genes. This review aims to provide a critical overview of heritable genetic aspects. Novel molecular technologies, such as next-generation sequencing, are discussed and how they can contribute to improving understanding of the molecular basis for athletic performance. It is important to ensure that the large amount of data that can be generated using these tools will be used effectively by ensuring well-designed studies.
Collapse
Affiliation(s)
- C G M Santos
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P M Pimentel-Coelho
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - B Budowle
- Molecular and Medical Genetics, University of North Texas - Health and Science Center, Fort Worth, Texas, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - R S de Moura-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Dornelas-Ribeiro
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil
| | - F A M S Pompeu
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Proia P, Bianco A, Schiera G, Saladino P, Contrò V, Caramazza G, Traina M, Grimaldi KA, Palma A, Paoli A. PPARα gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players. Open Access J Sports Med 2014; 5:273-8. [PMID: 25525399 PMCID: PMC4266416 DOI: 10.2147/oajsm.s68333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The PPARα gene encodes the peroxisome proliferator-activator receptor alpha, a central regulator of expression of other genes involved in fatty acid metabolism. The purpose of this study was to determine the prevalence of G allele of the PPARα intron 7 G/C polymorphism (rs4253778) in professional Italian soccer players. Methods Sixty professional soccer players and 30 sedentary volunteers were enrolled in the study. Samples of venous blood were obtained at rest, in the morning, by conventional clinical procedures; blood serum was collected and total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured. An aliquot of anticoagulant-treated blood was used to prepare genomic DNA from whole blood. The G/C polymorphic site in PPARα intron 7 was scanned by using the PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism) protocol with TaqI enzyme. Results We found variations in genotype distribution of PPARα polymorphism between professional soccer players and sedentary volunteers. Particularly, G alleles and the GG genotype were significantly more frequent in soccer players compared with healthy controls (64% versus 48%). No significant correlations were found between lipid profile and genotype background. Conclusion Previous results demonstrated an association of intron 7 G allele as well as the GG genotype in endurance athletes. Our result suggests that this is the case also in professional soccer players.
Collapse
Affiliation(s)
- Patrizia Proia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Patrizia Saladino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Valentina Contrò
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | | | - Marcello Traina
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Keith A Grimaldi
- Biomedical Engineering Laboratory, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
22
|
The Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene Modifies the Association of Physical Activity and Body Mass Changes in Polish Women. PPAR Res 2014; 2014:373782. [PMID: 25371663 PMCID: PMC4211145 DOI: 10.1155/2014/373782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ is a key regulator of adipogenesis, responsible for fatty acid storage and maintaining energy balance in the human body. Studies on the functional importance of the PPARG Pro12Ala polymorphic variants indicated that the observed alleles may influence body mass measurements; however, obtained results were inconsistent. We have decided to check if body mass changes observed in physically active participants will be modulated by the PPARG Pro12Ala genotype. The genotype distribution of the PPARG Pro12Ala allele was examined in a group of 201 Polish women measured for selected body mass variables before and after the completion of a 12-week training program. The results of our experiment suggest that PPARG genotype can modulate training-induced body mass measurements changes: after completion of the training program, Pro12/Pro12 homozygotes were characterised by a greater decrease of body fat mass measurements in comparison with 12Ala allele carriers. These results indicate that the PPARG 12Ala variant may impair the training-induced positive effects on body mass measurements; however, the detailed mechanism of such interaction remained unclear and observed correlation between PPARG genotype and body mass differential effects should be interpreted with caution.
Collapse
|
23
|
PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS One 2014; 9:e107171. [PMID: 25198533 PMCID: PMC4157815 DOI: 10.1371/journal.pone.0107171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022] Open
Abstract
To date, polymorphisms in several genes have been associated with a strength/power performance including alpha 3 actinin, ciliary neurotrophic factor, vitamin D receptor, or angiotensin I converting enzyme, underlining the importance of genetic component of the multifactorial strength/power-related phenotypes. The single nucleotide variation in peroxisome proliferator-activated receptor alpha gene (PPARA) intron 7 G/C (rs4253778; g.46630634G>C) has been repeatedly found to play a significant role in response to different types of physical activity. We investigated the effect of PPARA intron 7 G/C polymorphism specifically on anaerobic power output in a group of 77 elite male Czech ice hockey players (18-36 y). We determined the relative peak power per body weight (Pmax.kg(-1)) and relative peak power per fat free mass (W.kg(-1)FFM) during the 30-second Wingate Test (WT30) on bicycle ergometer (Monark 894E Peak bike, MONARK, Sweden). All WT30s were performed during the hockey season. Overall genotype frequencies were 50.6% GG homozygotes, 40.3% CG heterozygotes, and 9.1% CC homozygotes. We found statistically significant differences in Pmax.kg(-1) and marginally significant differences in Pmax.kg(-1)FFM values in WT30 between carriers and non-carriers for C allele (14.6 ± 0.2 vs. 13.9 ± 0.3 W.kg(-1) and 15.8 ± 0.2 vs. 15.2 ± 0.3 W.kg(-1)FFM, P = 0.036 and 0.12, respectively). Furthermore, Pmax.kg(-1)FFM strongly positively correlated with the body weight only in individuals with GG genotypes (R = 0.55; p<0.001). Our results indicate that PPARA 7C carriers exhibited higher speed strength measures in WT30. We hypothesize that C allele carriers within the cohort of trained individuals may possess a metabolic advantage towards anaerobic metabolism.
Collapse
|
24
|
PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol Biol Rep 2014; 41:5799-804. [PMID: 24996283 DOI: 10.1007/s11033-014-3453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 06/12/2014] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the effect of PPAR-α intron 7G>C and PPARGC1A gene Gly482Ser polymorphisms on aerobic performance of elite level endurance athletes. This study was carried out on 170 individuals (60 elite level endurance athletes and 110 sedentary controls). Aerobic performance of athletes and sedentary control groups were defined by maximal oxygen uptake capacity. DNA was isolated from peripheral blood using GeneJet Genomic DNA Purification kit. Genotyping of the PPAR-α intron 7G>C and PPARGC1A Gly482Ser polymorphisms was performed using PCR-RFLP methods, and statistical evaluations were carried out using SPSS 15.0. Mean age of athletes were 21.38 ± 2.83 (18-29) and control mean age were 25.92 ± 4.88 (18-35). Mean maximal oxygen consumption of athletes were 42.14 ± 7.6 ml/(kg min) and controls were 34.33 ± 5.43 ml/(kg min). We found statistically significant differences between the athlete and control groups with respect to both PPAR-α and PPARGC1A genotype distributions (p = 0.006, <0.001, respectively) and allele frequencies (<0.001, <0.001, respectively). Additionally, when we examined PPAR-α and PPARGC1A genotype distributions according to the aerobic performance test parameters, we found a statistically significant association between velocity, time and maximal oxygen consumption and PPAR-α and PPARGC1A genotypes (p < 0.001). To our knowledge, this is the first study in Turkey examined PPAR-α intron 7G>C and PPARGC1A Gly482Ser gene polymorphisms in elite level endurance athletes. Our results suggest that PPAR-α and PPARGC1A genes have strong effect on aerobic performance of elit level athletes.
Collapse
|
25
|
Ahmetov II, Naumov VA, Donnikov AE, Maciejewska-Karłowska A, Kostryukova ES, Larin AK, Maykova EV, Alexeev DG, Fedotovskaya ON, Generozov EV, Jastrzębski Z, Zmijewski P, Kravtsova OA, Kulemin NA, Leonska-Duniec A, Martykanova DS, Ospanova EA, Pavlenko AV, Podol'skaya AA, Sawczuk M, Alimova FK, Trofimov DY, Govorun VM, Cieszczyk P. SOD2 gene polymorphism and muscle damage markers in elite athletes. Free Radic Res 2014; 48:948-55. [PMID: 24865797 DOI: 10.3109/10715762.2014.928410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Exercise-induced oxidative stress is a state that primarily occurs in athletes involved in high-intensity sports when pro-oxidants overwhelm the antioxidant defense system to oxidize proteins, lipids, and nucleic acids. During exercise, oxidative stress is linked to muscle metabolism and muscle damage, because exercise increases free radical production. The T allele of the Ala16Val (rs4880 C/T) polymorphism in the mitochondrial superoxide dismutase 2 (SOD2) gene has been reported to reduce SOD2 efficiency against oxidative stress. In the present study we tested the hypothesis that the SOD2 TT genotype would be underrepresented in elite athletes involved in high-intensity sports and associated with increased values of muscle and liver damage biomarkers. The study involved 2664 Caucasian (2262 Russian and 402 Polish) athletes. SOD2 genotype and allele frequencies were compared to 917 controls. Muscle and liver damage markers [creatine kinase (CK), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP)] were examined in serum from 1444 Russian athletes. The frequency of the SOD2 TT genotype (18.6%) was significantly lower in power/strength athletes (n = 524) compared to controls (25.0%, p = 0.0076) or athletes involved in low-intensity sports (n = 180; 33.9%, p < 0.0001). Furthermore, the SOD2 T allele was significantly associated with increased activity of CK (females: p = 0.0144) and creatinine level (females: p = 0.0276; males: p = 0.0135) in athletes. Our data show that the SOD2 TT genotype might be unfavorable for high-intensity athletic events.
Collapse
Affiliation(s)
- I I Ahmetov
- Sport Technology Research Centre, Volga Region State Academy of Physical Culture, Sport and Tourism , Kazan , Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maciejewska-Karlowska A, Hanson ED, Sawczuk M, Cieszczyk P, Eynon N. Genomic haplotype within the Peroxisome Proliferator-Activated Receptor Delta (PPARD) gene is associated with elite athletic status. Scand J Med Sci Sports 2013; 24:e148-55. [PMID: 24118591 DOI: 10.1111/sms.12126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor delta (PPARδ; encoded by the PPARD gene) plays a role in energy metabolism and mitochondrial function. We have investigated the distribution of PPARD rs2267668, rs2016520 and rs1053049 polymorphisms, individually and in haplotype, in a cohort of 660 elite athletes which was subdivided into four different groups based on the different metabolic demands of their respective sports and 704 healthy controls. PPARD rs2016529 and rs1053049 were individually associated with overall elite athletic performance (P = 0.00002; and P = 0.0002) and also with athletes grouped as strength endurance (P = 0.00008; and P = 0.0003). Furthermore, PPARD A/C/C haplotype (rs2267668/rs2016520/rs1053049) was significantly underrepresented in all athletes and each subgroup of athletes when compared with controls (P < 0.000001), suggesting that harboring this specific haplotype is unfavorable for becoming an elite athlete. These results help to identify which genetic profiles may contribute to elite athletic performance, specifically the role of variants within the PPARD gene, and may be useful in talent identification or optimizing the response to training.
Collapse
|
27
|
Pokrywka A, Kaliszewski P, Majorczyk E, Zembroń-Łacny A. Genes in sport and doping. Biol Sport 2013; 30:155-61. [PMID: 24744482 PMCID: PMC3944571 DOI: 10.5604/20831862.1059606] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques.
Collapse
|
28
|
Maciejewska-Karlowska A, Sawczuk M, Cieszczyk P, Zarebska A, Sawczyn S. Association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene and strength athlete status. PLoS One 2013; 8:e67172. [PMID: 23799144 PMCID: PMC3683011 DOI: 10.1371/journal.pone.0067172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 05/16/2013] [Indexed: 11/24/2022] Open
Abstract
Background The 12Ala allele of the Peroxisome Proliferator-Activated Receptor gamma gene (PPARG) Pro12Ala polymorphism produces a decreased binding affinity of the PPARγ2 protein, resulting in low activation of the target genes. The 12Ala allele carriers display a significantly improved insulin sensitivity that may result in better glucose utilisation in working skeletal muscles. We hypothesise that the PPARG 12Ala allele could be associated with strength athlete status in Polish athletes. Methodology The genotype distribution of PPARG Pro12Ala was examined in 660 Polish athletes. The athletes were stratified into four subgroups: endurance, strength-endurance, sprint-strength and strength. Control samples were prepared from 684 unrelated sedentary volunteers. A χ2 test was used to compare the PPARG Pro12Ala allele and genotype frequencies between the different groups of athletes and control subjects. Bonferroni’s correction for multiple testing was applied. Results A statistically significant higher frequency of PPARG 12Ala alleles was observed in the subgroup of strength athletes performing short-term and very intense exertion characterised by predominant anaerobic energy production (13.2% vs. 7.5% in controls; P = 0.0007). Conclusion The PPARG 12Ala allele may be a relevant genetic factor favouring strength abilities in professional athletes, especially in terms of insulin-dependent metabolism, a shift of the energy balance towards glucose utilisation and the development of a favourable weight-to-strength ratio.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Karlowska
- Department of Biological Bases of Physical Culture, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland.
| | | | | | | | | |
Collapse
|
29
|
Broos S, Malisoux L, Theisen D, Francaux M, Deldicque L, Thomis MA. Role of alpha-actinin-3 in contractile properties of human single muscle fibers: a case series study in paraplegics. PLoS One 2012; 7:e49281. [PMID: 23145141 PMCID: PMC3493539 DOI: 10.1371/journal.pone.0049281] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/08/2012] [Indexed: 12/04/2022] Open
Abstract
A common nonsense polymorphism in the ACTN3 gene results in the absence of α-actinin-3 in XX individuals. The wild type allele has been associated with power athlete status and an increased force output in numeral studies, though the mechanisms by which these effects occur are unclear. Recent findings in the Actn3(-/-) (KO) mouse suggest a shift towards 'slow' metabolic and contractile characteristics of fast muscle fibers lacking α-actinin-3. Skinned single fibers from the quadriceps muscle of three men with spinal cord injury (SCI) were tested regarding peak force, unloaded shortening velocity, force-velocity relationship, passive tension and calcium sensitivity. The SCI condition induces an 'equal environment condition' what makes these subjects ideal to study the role of α-actinin-3 on fiber type expression and single muscle fiber contractile properties. Genotyping for ACTN3 revealed that the three subjects were XX, RX and RR carriers, respectively. The XX carrier's biopsy was the only one that presented type I fibers with a complete lack of type II(x) fibers. Properties of hybrid type II(a)/II(x) fibers were compared between the three subjects. Absence of α-actinin-3 resulted in less stiff type II(a)/II(x) fibers. The heterozygote (RX) exhibited the highest fiber diameter (0.121±0.005 mm) and CSA (0.012±0.001 mm(2)) and, as a consequence, the highest peak force (2.11±0.14 mN). Normalized peak force was similar in all three subjects (P = 0.75). Unloaded shortening velocity was highest in R-allele carriers (P<0.001). No difference was found in calcium sensitivity. The preservation of type I fibers and the absence of type II(x) fibers in the XX individual indicate a restricted transformation of the muscle fiber composition to type II fibers in response to long-term muscle disuse. Lack of α-actinin-3 may decrease unloaded shortening velocity and increase fiber elasticity.
Collapse
Affiliation(s)
- Siacia Broos
- Exercise Physiology Research Group, Department of Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| | - Laurent Malisoux
- Sports Medicine Research Laboratory, Public Research Center for Health, Grand-Duchy of Luxembourg, Luxembourg
| | - Daniel Theisen
- Sports Medicine Research Laboratory, Public Research Center for Health, Grand-Duchy of Luxembourg, Luxembourg
| | - Marc Francaux
- Faculté d’Éducation Physique et de Réadaption, Faculté de Médecine, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Exercise Physiology Research Group, Department of Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| | - Martine A. Thomis
- Physical Activity, Sports and Health Research Group, Department of Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| |
Collapse
|
30
|
Roth SM, Rankinen T, Hagberg JM, Loos RJF, Pérusse L, Sarzynski MA, Wolfarth B, Bouchard C. Advances in exercise, fitness, and performance genomics in 2011. Med Sci Sports Exerc 2012; 44:809-17. [PMID: 22330029 DOI: 10.1249/mss.0b013e31824f28b6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review of the exercise genomics literature emphasizes the highest quality articles published in 2011. Given this emphasis on the best publications, only a small number of published articles are reviewed. One study found that physical activity levels were significantly lower in patients with mitochondrial DNA mutations compared with controls. A two-stage fine-mapping follow-up of a previous linkage peak found strong associations between sequence variation in the activin A receptor, type-1B (ACVRIB) gene and knee extensor strength, with rs2854464 emerging as the most promising candidate polymorphism. The association of higher muscular strength with the rs2854464 A allele was confirmed in two separate cohorts. A study using a combination of transcriptomic and genomic data identified a comprehensive map of the transcriptomic features important for aerobic exercise training-induced improvements in maximal oxygen consumption, but no genetic variants derived from candidate transcripts were associated with trainability. A large-scale de novo meta-analysis confirmed that the effect of sequence variation in the fat mass and obesity-associated (FTO) gene on the risk of obesity differs between sedentary and physically active adults. Evidence for gene-physical activity interactions on type 2 diabetes risk was found in two separate studies. A large study of women found that physical activity modified the effect of polymorphisms in the lipoprotein lipase (LPL), hepatic lipase (LIPC), and cholesteryl ester transfer protein (CETP) genes, identified in previous genome-wide association study reports, on HDL cholesterol. We conclude that a strong exercise genomics corpus of evidence would not only translate into powerful genomic predictors but also have a major effect on exercise biology and exercise behavior research.
Collapse
Affiliation(s)
- Stephen M Roth
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gineviciene V, Jakaitiene A, Tubelis L, Kucinskas V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. Eur J Sport Sci 2012; 14 Suppl 1:S289-95. [PMID: 24444220 DOI: 10.1080/17461391.2012.691117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to determine the impact of ACE (I/D), PPARGC1A (G/A) and PPARA (G/C) polymorphisms on footballers performance among 199 Lithuanian professional footballers and 167 sedentary, healthy men (controls). Genotyping was performed using polymerase chain reaction and restriction fragment length polymorphism methods on DNA from leucocytes. Results revealed that the angiotensin-1-coverting enzyme gene (ACE) genotype distribution was significantly different between total football players group (II 23.6%, ID 46.7% and DD 29.6%) and the controls (II 24.6%, ID 29.9% and DD 45.5%; P=0.002). Although investigating PPARGC1A (G/A) and PPARA (G/C) polymorphisms no significant results were obtained in the total football players group, however, significant differences were determined between forwards and controls [PPARGC1A: GG 54.6%, GA 29.5%, AA 15.9% vs. GG 49.7%, GA 44.3% and AA 6.0% (P = 0.044); PPARA: GG 52.3%, GC 40.9%, CC 6.8% vs. GG 72.4%, GC 24.6% and CC 3.0% (P = 0.034)]. In the whole cohort, the odds ratio of the genotype [ACE ID + PPARA GG] being a footballer was 1.69 (95% CI 1.04-2.74), and of [ACE ID + PPARGC1A GG] 1.93 (95% CI 1.10-3.37) and of [ACE II + PPARA GC] 2.83 (95% CI 1.02-7.91) compared to controls. It was revealed that ACE ID genotype together with PPARA GG and PPARGC1A GG as well as ACE II genotype with PPARA GC is probably the 'preferable genotype' for footballers. Summing up, the present study suggests that the ACE, PPARGC1A and PPARA polymorphisms genotypes are associated, separately and in combination, with Lithuanian footballers' performance.
Collapse
Affiliation(s)
- Valentina Gineviciene
- a Department of Human and Medical Genetics, Faculty of Medicine , Vilnius University , Vilnius , Lithuania
| | | | | | | |
Collapse
|
32
|
Broos S, Windelinckx A, De Mars G, Huygens W, Peeters MW, Aerssens J, Vlietinck R, Beunen GP, Thomis MA. Is PPARα intron 7 G/C polymorphism associated with muscle strength characteristics in nonathletic young men? Scand J Med Sci Sports 2011; 23:494-500. [PMID: 22092351 DOI: 10.1111/j.1600-0838.2011.01406.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2011] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor, regulates fatty acid metabolism in heart and skeletal muscle. The intron 7 G/C polymorphism (rs4253778) has been associated with athletic performance. The rare C-allele was predominant in power athletes, whereas the G-allele was more frequent in endurance athletes. In the present study, we investigated the association between this polymorphism and strength characteristics in nonathletic, healthy young adults (n = 500; age 24.2 ± 4.4 years). Knee torque was measured during concentric knee flexion and extension movements at 60°/s, 120°/s, and 240°/s during 3, 25, and 5 repetitions, respectively. Also, resistance to muscle fatigue (i.e. work last 20% repetitions/work first 20% repetitions *100) was calculated. Differences in knee strength phenotypes between GG homozygous individuals and C-allele carriers were analyzed. The polymorphism did not influence the ability to produce isometric or dynamic knee flexor or extensor peak torque during static or dynamic conditions in this population (0.23 < P < 0.95). Similar results were found for the endurance ratio, a measure for resistance to muscle fatigue. In conclusion, the PPARα intron 7 G/C polymorphism does not seem to influence strength characteristics in a nonathletic population.
Collapse
Affiliation(s)
- S Broos
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, FaBeR, K.U.Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|