1
|
Kong L, Yang K, Li H, Wu X, Zhang Q. Comparison of Lower-Limb Muscle Synergies Between Young and Old People During Cycling Based on Electromyography Sensors-A Preliminary Cross-Sectional Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:6755. [PMID: 39460234 PMCID: PMC11511221 DOI: 10.3390/s24206755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/28/2024]
Abstract
The purpose of this study was to analyze the lower-limb muscle synergies of young and older adults during stationary cycling across various mechanical conditions to reveal adaptive strategies employed by the elderly to address various common pedaling tasks and function degradation. By comparing lower-limb muscle synergies during stationary cycling between young and old people, this study examined changes in muscle synergy patterns during exercise in older individuals. This is crucial for understanding neuromuscular degeneration and changes in movement patterns in older individuals. Sixteen young and sixteen older experienced cyclists were recruited to perform stationary cycling tasks at two levels of power (60 and 100 W) and three cadences (40, 60, and 90 rpm) in random order. The lower-limb muscle synergies and their inter- and intra-individual variability were analyzed. Three synergies were extracted in this study under all riding conditions in both groups while satisfying overall variance accounted for (VAF) > 85% and muscle VAF > 75%. The older adults exhibited lower variability in synergy vector two and a higher trend in the variability of activation coefficient three, as determined by calculating the variance ratio. Further analyses of muscle synergy structures revealed increased weighting in major contribution muscles, the forward-shifting peak activation in synergy one, and lower peak magnitude in synergy three among older adults. To produce the same cycling power and cadence as younger individuals, older adults make adaptive adjustments in muscle control-increased weighting in major contribution muscles, greater consistency in the use of primary force-producing synergies, and earlier peak activation of subsequent synergy.
Collapse
Affiliation(s)
- Li Kong
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China;
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Kun Yang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Haojie Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Xie Wu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Qiang Zhang
- Institute for Biomechanics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
2
|
Kaufmann P, Koller W, Wallnöfer E, Goncalves B, Baca A, Kainz H. Increased trial-to-trial similarity and reduced temporal overlap of muscle synergy activation coefficients manifest during learning and with increasing movement proficiency. Sci Rep 2024; 14:17638. [PMID: 39085397 PMCID: PMC11291506 DOI: 10.1038/s41598-024-68515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Muscle synergy analyses are used to enhance our understanding of motor control. Spatially fixed synergy weights coordinate multiple co-active muscles through activation commands, known as activation coefficients. To gain a more comprehensive understanding of motor learning, it is essential to understand how activation coefficients vary during a learning task and at different levels of movement proficiency. Participants walked on a line, a beam, and learned to walk on a tightrope-tasks that represent different levels of proficiency. Muscle synergies were extracted from electromyography signals across all conditions and the number of synergies was determined by the knee-point of the total variance accounted for (tVAF) curve. The results indicated that the tVAF of one synergy decreased with task proficiency, with the tightrope task resulting in the highest tVAF compared to the line and beam tasks. Furthermore, with increasing proficiency and after a learning process, trial-to-trial similarity increased and temporal overlap of synergy activation coefficients decreased. Consequently, we propose that precise adjustment and refinement of synergy activation coefficients play a pivotal role in motor learning.
Collapse
Affiliation(s)
- Paul Kaufmann
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Willi Koller
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Elias Wallnöfer
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Basilio Goncalves
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Arnold Baca
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
| | - Hans Kainz
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria.
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria.
| |
Collapse
|
3
|
Peng F, Wang D, Zhang Y, Xie Y. Study of the internal mechanism of attention focus affecting countermovement jump performance based on muscle synergy theory. PLoS One 2024; 19:e0306049. [PMID: 39052571 PMCID: PMC11271881 DOI: 10.1371/journal.pone.0306049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE The purpose of this study was to explain the internal mechanism of attention focus affecting performance of countermovement jump based on muscle synergy theory. METHODS Participants involved untrained group(N = 10) and high-level group(N = 11). Subjects performed countermovement jump with internal attention focus instruction (IF), external distal attention focus instruction (EDF), and external proximal attention focus instruction (EPF). The electromyography (EMG) signals of the dominant vastus lateralis muscle (VL), semitendinosus muscle (ST), tibial anterior muscle (TA), rectus femoris muscle (RF), and medial gastrocnemius (MG) were recorded. The non-negative matrix factorization was used to extract muscle synergy. RESULTS 1) Attention focus did not affect countermovement jump performance and the number of muscle synergy in the high-level group (P>0.05). 2) Attention focus instructions affected the untrained group countermovement jump (P<0.05). and EDF and EPF reduced the number of muscle synergy. 3)The Cohen's d of EDF (0.269) was less than EPF (0.377) in untrained group. CONCLUSION For the untrained people, the improved motor performance caused by attention focus resembled the adaptive changes that occur with long-term training. The reason why an EDF is superior to EPF is that the former produces more thorough changes in muscle synergy.
Collapse
Affiliation(s)
- Fan Peng
- Criminal Investigation Police University of China, Shenyang, China
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Dongxue Wang
- Faculty of Health Sciences, Cancer Center, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Yonghao Zhang
- Chinese People’s Liberation Army 91206 Force, Qingdao, China
| | - Yongmin Xie
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Reinpõld K, Rannama I, Port K. Agreement between Ventilatory Thresholds and Bilaterally Measured Vastus Lateralis Muscle Oxygen Saturation Breakpoints in Trained Cyclists: Effects of Age and Performance. Sports (Basel) 2024; 12:40. [PMID: 38393260 PMCID: PMC10892087 DOI: 10.3390/sports12020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study focused on comparing metabolic thresholds derived from local muscle oxygen saturation (SmO2) signals, obtained using near-infrared spectroscopy (NIRS), with global pulmonary ventilation rates measured at the mouth. It was conducted among various Age Groups within a well-trained cyclist population. Additionally, the study examined how cycling performance characteristics impact the discrepancies between ventilatory thresholds (VTs) and SmO2 breakpoints (BPs). METHODS Junior (n = 18) and Senior (n = 15) cyclists underwent incremental cycling tests to assess their aerobic performance and to determine aerobic (AeT) and anaerobic (AnT) threshold characteristics through pulmonary gas exchange and changes in linearity of the vastus lateralis (VL) muscle SmO2 signals. We compared the relative power (Pkg) at ventilatory thresholds (VTs) and breakpoints (BPs) for the nondominant (ND), dominant (DO), and bilaterally averaged (Avr) SmO2 during the agreement analysis. Additionally, a 30 s sprint test was performed to estimate anaerobic performance capabilities and to assess the cyclists' phenotype, defined as the ratio of P@VT2 to the highest 5 s sprint power. RESULTS The Pkg@BP for Avr SmO2 had higher agreement with VT values than ND and DO. Avr SmO2 Pkg@BP1 was lower (p < 0.05) than Pkg@VT1 (mean bias: 0.12 ± 0.29 W/kg; Limits of Agreement (LOA): -0.45 to 0.68 W/kg; R2 = 0.72) and mainly among Seniors (0.21 ± 0.22 W/kg; LOA: -0.22 to 0.63 W/kg); there was no difference (p > 0.05) between Avr Pkg@BP2 and Pkg@VT2 (0.03 ± 0.22 W/kg; LOA: -0.40 to 0.45 W/kg; R2 = 0.86). The bias between two methods correlated significantly with the phenotype (r = -0.385 and r = -0.515 for AeT and AnT, respectively). CONCLUSIONS Two breakpoints can be defined in the NIRS-captured SmO2 signal of VL, but the agreement between the two methods at the individual level was too low for interchangeable usage of those methods in the practical training process. Older cyclists generally exhibited earlier thresholds in muscle oxygenation signals compared to systemic responses, unlike younger cyclists who showed greater variability and no significant differences in this regard in bias values between the two threshold evaluation methods with no significant difference between methods. More sprinter-type cyclists tended to have systemic VT thresholds earlier than local NIRS-derived thresholds than athletes with relatively higher aerobic abilities.
Collapse
Affiliation(s)
- Karmen Reinpõld
- School of Natural Sciences and Health, University of Tallinn, 10120 Tallinn, Estonia; (I.R.); (K.P.)
| | | | | |
Collapse
|
5
|
Liljedahl JB, Arndt A, Nooijen CF, Bjerkefors A. Isometric, Dynamic, and Manual Muscle Strength Measures and Their Association With Cycling Performance in Elite Paracyclists. Am J Phys Med Rehabil 2023; 102:461-467. [PMID: 35349541 DOI: 10.1097/phm.0000000000002014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Paracycling classification aims to generate fair competition by discriminating between levels of activity limitation. This study investigated the relationship between lower limb manual muscle tests (MMT) with ratio-scaled measures of isometric and dynamic strength and of the ratio-scaled measures with cycling performance. DESIGN Fifty-six para cyclists (44 males, 12 females) with leg impairments performed isometric and dynamic strength tests: leg push and pull, and an all-out 20-sec sprint. The MMT results were obtained from the classification database ( n = 21) and race speeds from time trials ( n = 54). RESULTS Regression analyses showed significant associations of MMT with isometric push ( R2 = 0.49), dynamic push ( R2 = 0.35), and dynamic pull ( R2 = 0.28). Isometric strength was significantly correlated with dynamic push (ρ = 0.63) and pull (ρ = 0.54). The isometric and dynamic tests were significantly associated with sprint power and race speed ( R2 = 0.16-0.50). CONCLUSIONS The modified MMT and ratio-scaled measures were significantly associated. The significant relation of isometric and dynamic strength with sprint power and race speed maps the impact of lower limb impairments on paracycling performance. The MMT and the isometric and dynamic measures show potential for use in paracycling classification.
Collapse
Affiliation(s)
- Johanna B Liljedahl
- From the Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden (JBL, AA, CFN, AB); Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden (AA); and Department of Neuroscience, Karolinska Institute, Stockholm, Sweden (AB)
| | | | | | | |
Collapse
|
6
|
Sachet I, Brochner Nygaard NP, Guilhem G, Hug F, Dorel S. Strength capacity of lower-limb muscles in world-class cyclists: new insights into the limits of sprint cycling performance. Sports Biomech 2023; 22:536-553. [PMID: 35029136 DOI: 10.1080/14763141.2021.2024243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the relationship between the torque-generating capacity in sprint cycling and the strength capacity of the six lower-limb muscle groups in male and female world-class sprint cyclists. Eleven female and fifteen male top-elite cyclists performed 5-s sprints at maximal power in seated and standing positions. They also performed a set of maximal voluntary ankle, knee and hip flexions and extensions to assess single-joint isometric and isokinetic torques. Isokinetic torques presented stronger correlations with cycling torque than isometric torques for both body positions, regardless of the group. In the female group, knee extension and hip flexion torques accounted for 81.2% of the variance in cycling torque, while the ability to predict cycling torque was less evident in males (i.e., 59% of variance explained by the plantarflexion torque only). The standing condition showed higher correlations than seated and a better predictive model in males (R2 = 0.88). In addition to the knee extensors and flexors and hip extensors, main power producers, the strength capacity of lower-limb distal plantarflexor (and to a lesser extent dorsiflexor) muscles, as well as other non-measured qualities (e.g., the upper body), might be determinants to produce such extremely high cycling torque in males.
Collapse
Affiliation(s)
- Iris Sachet
- Laboratory "Movement, Interactions, Performance" (Ea 4334), University of Nantes, Nantes, France.,French Cycling Federation, Saint-Quentin-en-Yvelines, France
| | - Niels Peter Brochner Nygaard
- Research Unit of Health Science, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Gaël Guilhem
- Laboratory Sport, Expertise and Performance (Ea 7370), French Institute of Sport (Insep), Paris, France
| | - François Hug
- Laboratory "Movement, Interactions, Performance" (Ea 4334), University of Nantes, Nantes, France.,LAMHESS, Université Côte d'azur, Nice, France.,Nhmrc Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Institut Universitaire de France (Iuf), Paris, France
| | - Sylvain Dorel
- Laboratory "Movement, Interactions, Performance" (Ea 4334), University of Nantes, Nantes, France
| |
Collapse
|
7
|
Turpin NA, Uriac S, Dalleau G. How to improve the muscle synergy analysis methodology? Eur J Appl Physiol 2021; 121:1009-1025. [PMID: 33496848 DOI: 10.1007/s00421-021-04604-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023]
Abstract
Muscle synergy analysis is increasingly used in domains such as neurosciences, robotics, rehabilitation or sport sciences to analyze and better understand motor coordination. The analysis uses dimensionality reduction techniques to identify regularities in spatial, temporal or spatio-temporal patterns of multiple muscle activation. Recent studies have pointed out variability in outcomes associated with the different methodological options available and there was a need to clarify several aspects of the analysis methodology. While synergy analysis appears to be a robust technique, it remain a statistical tool and is, therefore, sensitive to the amount and quality of input data (EMGs). In particular, attention should be paid to EMG amplitude normalization, baseline noise removal or EMG filtering which may diminish or increase the signal-to-noise ratio of the EMG signal and could have major effects on synergy estimates. In order to robustly identify synergies, experiments should be performed so that the groups of muscles that would potentially form a synergy are activated with a sufficient level of activity, ensuring that the synergy subspace is fully explored. The concurrent use of various synergy formulations-spatial, temporal and spatio-temporal synergies- should be encouraged. The number of synergies represents either the dimension of the spatial structure or the number of independent temporal patterns, and we observed that these two aspects are often mixed in the analysis. To select a number, criteria based on noise estimates, reliability of analysis results, or functional outcomes of the synergies provide interesting substitutes to criteria solely based on variance thresholds.
Collapse
Affiliation(s)
- Nicolas A Turpin
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France.
| | - Stéphane Uriac
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| | - Georges Dalleau
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| |
Collapse
|
8
|
Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl Bionics Biomech 2020; 2020:2041549. [PMID: 32676126 PMCID: PMC7330631 DOI: 10.1155/2020/2041549] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes' performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes' performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.
Collapse
|
9
|
Abstract
State-of-the-art biomechanical laboratories provide a range of tools that allow precise measurements of kinematic, kinetic, motor and physiologic characteristics. Force sensors, motion capture devices and electromyographic recording measure the forces exerted at the pedal, saddle, and handlebar and the joint torques created by muscle activity. These techniques make it possible to obtain a detailed biomechanical analysis of cycling movements. However, despite the reasonable accuracy of such measures, cycling performance remains difficult to fully explain. There is an increasing demand by professionals and amateurs for various biomechanical assessment services. Most of the difficulties in understanding the link between biomechanics and performance arise because of the constraints imposed by the bicycle, human physiology and musculo-skeletal system. Recent studies have also pointed out the importance of evaluating not only output parameters, such as power output, but also intrinsic factors, such as the cyclist coordination. In this narrative review, we present various techniques allowing the assessment of a cyclist at a biomechanical level, together with elements of interpretation, and we show that it is not easy to determine whether a certain technique is optimal or not.
Collapse
|
10
|
Muscle coordination analysis by time-varying muscle synergy extraction during cycling across various mechanical conditions. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Merkes PFJ, Menaspà P, Abbiss CR. Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions. Scand J Med Sci Sports 2019; 30:64-73. [DOI: 10.1111/sms.13555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Paul F. J. Merkes
- Centre for Exercise and Sports Science Research School of Medical and Health Sciences Edith Cowan University Joondalup WA Australia
| | - Paolo Menaspà
- Centre for Exercise and Sports Science Research School of Medical and Health Sciences Edith Cowan University Joondalup WA Australia
| | - Chris R. Abbiss
- Centre for Exercise and Sports Science Research School of Medical and Health Sciences Edith Cowan University Joondalup WA Australia
| |
Collapse
|
12
|
Esmaeili J, Maleki A. Comparison of muscle synergies extracted from both legs during cycling at different mechanical conditions. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:827-838. [PMID: 31161596 DOI: 10.1007/s13246-019-00767-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
Muscle synergies are the building blocks for generating movement by the central nervous system (CNS). According to this hypothesis, CNS decreases the complexity of motor control by combination of a small number of muscle synergies. The aim of this work is to investigate similarity of muscle synergies during cycling across various mechanical conditions. Twenty healthy subjects performed three 6- min cycling tasks at over a range of rotational speed (40, 50, and 60 rpm) and resistant torque (3, 5, and 7 N/m). Surface electromyography (sEMG) signals were recorded during pedaling from eight muscles of the right and left legs. We extracted four synchronous muscle synergies by using the non-negative matrix factorization (NMF) method. Mean and standard deviation of the goodness of the signal reconstruction (R2) for all subjects was obtained 0.9898 ± 0.0535. We investigated the functional roles of both leg muscles during cycling by synchronous muscle synergy extraction. We compared the muscle synergies extracted from all subjects in all mechanical conditions. The total mean and standard deviation of the similarity of synergy vectors for all subjects in all mechanical conditions was obtained 0.8788 ± 0.0709. We found the high degrees of similarity among the sets of synchronous muscle synergies across mechanical conditions and also across different subjects. Our results demonstrated that different subjects at different mechanical conditions use the same motor control strategies for cycling, despite inter-individual variability of muscle patterns.
Collapse
Affiliation(s)
- Javad Esmaeili
- Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
| | - Ali Maleki
- Biomedical Engineering Department, Semnan University, Semnan, Iran.
| |
Collapse
|
13
|
Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review. Appl Bionics Biomech 2018; 2018:3934698. [PMID: 29808098 PMCID: PMC5902115 DOI: 10.1155/2018/3934698] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023] Open
Abstract
In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for (i) diagnosis or pathology assessment in clinics, (ii) robot-control design in robotics, and (iii) athletes' performance assessment or training guidelines in sports.
Collapse
|