1
|
Staab JS, Sczuroski CE, Gwin JA, Geddis AV, Hughes JM, Roberts BM. Nonsteroidal Anti-Inflammatory Drugs Do Not Affect the Bone Metabolic Response to Exercise. Med Sci Sports Exerc 2025; 57:201-209. [PMID: 39235161 DOI: 10.1249/mss.0000000000003553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAID) are associated with increased stress fracture risk, potentially due to inhibiting the adaptive bone formation responses to exercise. This study investigated if a single, maximal dose of three different NSAID alters bone formation biomarker response to strenuous exercise. METHODS In a randomized, counterbalanced order, 12 participants (10 male, 2 female), performed four bouts of plyometric jumps, each separated by at least 1 wk. Two hours before exercise, participants consumed either placebo or NSAID: ibuprofen (800 mg), celecoxib (200 mg), flurbiprofen (100 mg). Blood was collected before (PRE), and at 0, 15, 60, 120, and 240 min postexercise. Parathyroid hormone, ionized calcium, procollagen type 1 N-terminal propeptide, bone alkaline phosphatase, osteocalcin, C-terminal telopeptide of type 1 collagen, tartrate-resistant acid phosphatase, and sclerostin were measured. Prostaglandin E2 metabolite and creatinine were measured in urine. Data were analyzed using repeated-measures ANOVA and area under the curve analysis. Data are mean ± SD. RESULTS There was an exercise effect for procollagen type 1 N-terminal propeptide, bone alkaline phosphatase, osteocalcin, C-terminal telopeptide of type 1 collagen, tartrate-resistant acid phosphatase, sclerostin, osteoprotegerin, parathyroid hormone, and ionized calcium (all P < 0.05), but no NSAID treatment effect for any biomarker (all P > 0.05). Area under the curve analyses were not different for any biomarker ( P > 0.05). Prostaglandin E2 metabolite was higher during the placebo trial (322 ± 153 pg·mg -1 creatinine, P < 0.05) compared with ibuprofen (135 ± 83 pg·mg -1 ), celecoxib (202 ± 107 pg·mg -1 ), and flurbiprofen (159 ± 74 pg·mg -1 ). CONCLUSIONS Plyometric exercise induced changes in bone metabolism, but the responses were unaltered by consuming NSAID 2 h before exercise.
Collapse
Affiliation(s)
- Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Cara E Sczuroski
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Jess A Gwin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| |
Collapse
|
2
|
Scapec B, Grgic J, Varovic D, Mikulic P. Caffeine, but not paracetamol (acetaminophen), enhances muscular endurance, strength, and power. J Int Soc Sports Nutr 2024; 21:2400513. [PMID: 39246027 PMCID: PMC11385662 DOI: 10.1080/15502783.2024.2400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Caffeine is one of the most popular ergogenic aids consumed by athletes. Caffeine's ergogenic effect has been generally explained by its ability to bind to adenosine receptors, thus modulating pain and reducing perceived exertion. Another pharmacological agent that may improve performance due to its analgesic proprieties is paracetamol. This study aimed to explore the effects of caffeine, paracetamol, and caffeine + paracetamol consumption on muscular endurance, strength, power, anaerobic endurance, and jumping performance. METHODS In this randomized, crossover, double-blind study, 29 resistance-trained participants (11 men and 18 women) ingested either a placebo, caffeine (3 mg/kg), paracetamol (1500 mg) or caffeine + paracetamol 45 min before the testing sessions. The testing sessions included performing the bench press exercise with 75% of one-repetition maximum to momentary muscular failure, isokinetic knee extension and flexion at angular velocities of 60°/sec and 180°/sec, Wingate, and countermovement jump (CMJ) tests. RESULTS Compared to placebo, isolated caffeine ingestion increased the number of repetitions performed in the bench press (p = 0.005; d = 0.42). Compared to placebo, isolated caffeine ingestion and/or caffeine + paracetamol consumption was ergogenic for strength (torque), muscular endurance (total work), or power in the isokinetic assessment, particularly at slower angular velocities (p = 0.027 to 0.002; d = 0.16 to 0.26). No significant differences between the conditions were observed for outcomes related to the Wingate and CMJ tests. CONCLUSION This study provided novel evidence into the effectiveness of caffeine, paracetamol, and their combination on exercise performance. We found improvements in muscular endurance, strength, or power only when caffeine was consumed in isolation, or in combination with paracetamol. Isolated paracetamol consumption did not improve performance for any of the analyzed outcomes, thus calling into question its ergogenic potential.
Collapse
Affiliation(s)
- Bela Scapec
- University of Zagreb Faculty of Kinesiology, Zagreb, Croatia
| | - Jozo Grgic
- National University of Singapore, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Singapore
- National University Health System, Centre for Healthy Longevity, Singapore
| | - Dorian Varovic
- University of Zagreb Faculty of Kinesiology, Zagreb, Croatia
| | - Pavle Mikulic
- University of Zagreb Faculty of Kinesiology, Zagreb, Croatia
| |
Collapse
|
3
|
Roberts BM, Geddis AV, Sczuroski CE, Reynoso M, Hughes JM, Gwin JA, Staab JS. A single, maximal dose of celecoxib, ibuprofen, or flurbiprofen does not reduce the muscle signalling response to plyometric exercise in young healthy adults. Eur J Appl Physiol 2024; 124:3607-3617. [PMID: 39044030 DOI: 10.1007/s00421-024-05565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) possess analgesic and anti-inflammatory properties by inhibiting cyclooxygenase (COX) enzymes. Conflicting evidence exists on whether NSAIDs influence signaling related to muscle adaptations and exercise with some research finding a reduction in muscle protein synthesis signaling via the AKT-mTOR pathway, changes in satellite cell signaling, reductions in muscle protein degradation, and reductions in cell proliferation. In this study, we determined if a single maximal dose of flurbiprofen (FLU), celecoxib (CEL), ibuprofen (IBU), or a placebo (PLA) affects the short-term muscle signaling responses to plyometric exercise. METHODS This was a block randomized, double-masked, crossover design, where 12 participants performed four plyometric exercise bouts consisting of 10 sets of 10 plyometric jumps at 40% 1RM. Two hours before exercise, participants consumed a single dose of celecoxib (CEL 200 mg), IBU (800 mg), FLU (100 mg) or PLA with food. Muscle biopsy samples were collected before and 3-h after exercise from the vastus lateralis. Data were analyzed using a repeated measures (RM) ANOVA, ANOVA, or a Friedman test. Significance was considered at p < 0.05. RESULTS We found no treatment effects on the mRNA expression of PTSG1, PTSG2, MYC, TBP, RPLOP, MYOD1, Pax7, MYOG, Atrogin-1, or MURF1 (all, p > 0.05). We also found no treatment effects on AKT-mTOR signaling or MAPK signaling measured through the phosphorylation status of mTORS2441, mTORS2448, RPS6 235/236, RPS 240/244, 4EBP1, ERK1/2, p38 T180/182 normalized to their respective total abundance (all, p > 0.05). However, we did find a significant difference between MNK1 T197/202 in PLA compared to FLU (p < .05). CONCLUSION A single, maximal dose of IBU, CEL, or FLU taken prior to exercise did not affect the signaling of muscle protein synthesis, protein degradation, or ribosome biogenesis three hours after a plyometric training bout.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA.
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Cara E Sczuroski
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jess A Gwin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| |
Collapse
|
4
|
Meyer T. The two other highlighted papers of this issue: Efficacy of NSAID use in athletes; historical trends in Australian Football data. J Sci Med Sport 2024; 27:286. [PMID: 38777497 DOI: 10.1016/j.jsams.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
|
5
|
Roberts BM, Geddis AV, Ciuciu A, Reynoso M, Mehta N, Varanoske AN, Kelley AM, Walker RJ, Munoz R, Kolb AL, Staab JS, Naimo MA, Tomlinson RE. Acetaminophen influences musculoskeletal signaling but not adaptations to endurance exercise training. FASEB J 2024; 38:e23586. [PMID: 38568858 DOI: 10.1096/fj.202302642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Acetaminophen (ACE) is a widely used analgesic and antipyretic drug with various applications, from pain relief to fever reduction. Recent studies have reported equivocal effects of habitual ACE intake on exercise performance, muscle growth, and risks to bone health. Thus, this study aimed to assess the impact of a 6-week, low-dose ACE regimen on muscle and bone adaptations in exercising and non-exercising rats. Nine-week-old Wistar rats (n = 40) were randomized to an exercise or control (no exercise) condition with ACE or without (placebo). For the exercise condition, rats ran 5 days per week for 6 weeks at a 5% incline for 2 min at 15 cm/s, 2 min at 20 cm/s, and 26 min at 25 cm/s. A human equivalent dose of ACE was administered (379 mg/kg body weight) in drinking water and adjusted each week based on body weight. Food, water intake, and body weight were measured daily. At the beginning of week 6, animals in the exercise group completed a maximal treadmill test. At the end of week 6, rats were euthanized, and muscle cross-sectional area (CSA), fiber type, and signaling pathways were measured. Additionally, three-point bending and microcomputer tomography were measured in the femur. Follow-up experiments in human primary muscle cells were used to explore supra-physiological effects of ACE. Data were analyzed using a two-way ANOVA for treatment (ACE or placebo) and condition (exercise or non-exercise) for all animal outcomes. Data for cell culture experiments were analyzed via ANOVA. If omnibus significance was found in either ANOVA, a post hoc analysis was completed, and a Tukey's adjustment was used. ACE did not alter body weight, water intake, food intake, or treadmill performance (p > .05). There was a treatment-by-condition effect for Young's Modulus where placebo exercise was significantly lower than placebo control (p < .05). There was no treatment by condition effects for microCT measures, muscle CSA, fiber type, or mRNA expression. Phosphorylated-AMPK was significantly increased with exercise (p < .05) and this was attenuated with ACE treatment. Furthermore, phospho-4EBP1 was depressed in the exercise group compared to the control (p < .05) and increased in the ACE control and ACE exercise group compared to placebo exercise (p < .05). A low dose of ACE did not influence chronic musculoskeletal adaptations in exercising rodents but acutely attenuated AMPK phosphorylation and 4EBP1 dephosphorylation post-exercise.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alexandra Ciuciu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Nikhil Mehta
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alyssa N Varanoske
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - Alyssa M Kelley
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Raymond J Walker
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Rigoberto Munoz
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alexander L Kolb
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Marshall A Naimo
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|