1
|
Bondar AN, Smith JC. Bacteriorhodopsin proton-pumping mechanism: Successes and challenges in computational approaches. Biophys J 2025:S0006-3495(25)00209-7. [PMID: 40186354 DOI: 10.1016/j.bpj.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Bacteriorhodopsin (bR) is perhaps the best-studied proton pump. Over about four decades, research on this fascinating photocyclic light-driven protein inspired the development of key experimental and computational methodologies that are now widely used in membrane protein studies. We review here failures and successes in computational approaches that have been applied to study the bR proton-transfer steps. Conflict between experimental results pertaining to the proton transfer mechanisms in the early photocycle intermediates was resolved by detailed quantum mechanical/molecular mechanical computation, the results of which were confirmed more than a decade later. Key to this approach was the realization that, to understand how the pump works and achieves directional transfer of protons, the individual reaction steps-proton transfer and reorganization of the internal hydrogen-bond network-needed to be considered within the context of the energy landscape of the complete reaction cycle.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Măgurele, Romania; Institut für Neurowissenschaften und Medizin, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, Knoxville, Tennessee.
| |
Collapse
|
2
|
Bertalan É, Bondar AN. Graphs of protein-water hydrogen bond networks to dissect structural movies of ion-transfer microbial rhodopsins. Front Chem 2023; 10:1075648. [PMID: 36712989 PMCID: PMC9880326 DOI: 10.3389/fchem.2022.1075648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial rhodopsins are membrane proteins that use the energy absorbed by the covalently bound retinal chromophore to initiate reaction cycles resulting in ion transport or signal transduction. Thousands of distinct microbial rhodopsins are known and, for many rhodopsins, three-dimensional structures have been solved with structural biology, including as entire sets of structures solved with serial femtosecond crystallography. This sets the stage for comprehensive studies of large datasets of static protein structures to dissect structural elements that provide functional specificity to the various microbial rhodopsins. A challenge, however, is how to analyze efficiently intra-molecular interactions based on large datasets of static protein structures. Our perspective discusses the usefulness of graph-based approaches to dissect structural movies of microbial rhodopsins solved with time-resolved crystallography.
Collapse
Affiliation(s)
- Éva Bertalan
- Physikzentrum, RWTH Aachen University, Aachen, Germany
| | - Ana-Nicoleta Bondar
- Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany,Faculty of Physics, University of Bucharest, Măgurele, Romania,*Correspondence: Ana-Nicoleta Bondar, ,
| |
Collapse
|
3
|
Ono J, Okada C, Nakai H. Hydroxide Ion Mechanism for Long-Range Proton Pumping in the Third Proton Transfer of Bacteriorhodopsin. Chemphyschem 2022; 23:e202200109. [PMID: 35818319 DOI: 10.1002/cphc.202200109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/21/2022] [Indexed: 11/10/2022]
Abstract
In bacteriorhodopsin, representative light-driven proton pump, five proton transfers yield vectorial active proton translocation, resulting in a proton gradient in microbes. Third proton transfer occurs from Asp96 to the Schiff base on the photocycle, which is expected to be a long-range proton transfer via the Grotthuss mechanism through internal water molecules. Here, large-scale quantum molecular dynamics simulations are performed for the third proton transfer, where all the atoms (~50000 atoms) are treated quantum-mechanically. The simulations demonstrate that two reaction paths exist along the water wire, namely, via hydronium and via hydroxide ions. The free energy analysis confirms that the path via hydroxide ions is considerably favorable and consistent with the observed lifetime of the transient water wire. Therefore, the proposed hydroxide ion mechanism, as in the first proton transfer, is responsible for the third long-range proton transfer.
Collapse
Affiliation(s)
- Junichi Ono
- Kyoto University: Kyoto Daigaku, Elements Strategy Initiative for Catalysts & Batteries (ESICB), 1-30 Goryo-Ohara, 615-8245, Nishi-ku, JAPAN
| | - Chika Okada
- Waseda University: Waseda Daigaku, Department of Chemistry and Biochemistry, 3-4-1 Okubo, 169-8555, Shinjuku, JAPAN
| | - Hiromi Nakai
- Waseda University Faculty of Science and Engineering: Waseda Daigaku Riko Gakujutsuin, Department of Chemistry and Biochemistry, 3-4-1 Okubo, 169-8555, Shinjuku, JAPAN
| |
Collapse
|
4
|
Brown LS. Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183867. [PMID: 35051382 DOI: 10.1016/j.bbamem.2022.183867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
In the last twenty years, our understanding of the rules and mechanisms for the outward light-driven proton transport (and underlying proton transfers) by microbial rhodopsins has been changing dramatically. It transitioned from a very detailed atomic-level understanding of proton transport by bacteriorhodopsin, the prototypical proton pump, to a confounding variety of sequence motifs, mechanisms, directions, and modes of transport in its newly found homologs. In this review, we will summarize and discuss experimental data obtained on new microbial rhodopsin variants, highlighting their contribution to the refinement and generalization of the ideas crystallized in the previous century. In particular, we will focus on the proton transport (and transfers) vectoriality and their structural determinants, which, in many cases, remain unidentified.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
5
|
Chitra Devi A, Siva V, Thangarasu S, Athimoolam S, Asath Bahadur S. Supramolecular architecture, thermal, Quantum chemical analysis and in vitro biological properties on sulfate salt of 4-aminoantipyrine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Adam S, Wiebeler C, Schapiro I. Structural Factors Determining the Absorption Spectrum of Channelrhodopsins: A Case Study of the Chimera C1C2. J Chem Theory Comput 2021; 17:6302-6313. [PMID: 34255519 DOI: 10.1021/acs.jctc.1c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Channelrhodopsins are photosensitive proteins that trigger flagella motion in single-cell algae and have been successfully utilized in optogenetic applications. In optogenetics, light is used to activate neural cells in living organisms, which can be achieved by exploiting the ion channel signaling of channelrhodopsins. Tailoring channelrhodopsins for such applications includes the tuning of the absorption maximum. In order to establish rational design and to obtain a desired spectral shift, a basic understanding of the absorption spectrum is required. We have studied the chimera C1C2 as a representative of this protein family and the first member with an available crystal structure. For this purpose, we sampled the conformations of C1C2 using quantum mechanical/molecular mechanical molecular dynamics and subjected the resulting snapshots of the trajectory to excitation energy calculations using ADC(2) and simplified time-dependent density functional theory. In contrast to previous reports, we found that different hydrogen-bonding networks-involving the retinal protonated Schiff base, the putative counterions E162 and D292, and water molecules-had only a small impact on the absorption spectrum. However, in the case of deprotonated E162, increasing the distance to the Schiff base hydrogen-bonding partner led to a systematic blue shift. The β-ionone ring rotation was identified as another important contributor. Yet the most important factors were found to be the bond length alternation and bond order alternation that were linearly correlated to the absorption maximum by up to 62 and 82%, respectively. We ascribe this novel insight into the structural basis of the absorption spectrum to our enhanced protein setup that includes membrane embedding as well as long and extensive sampling.
Collapse
Affiliation(s)
- Suliman Adam
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
8
|
Ono J, Imai M, Nishimura Y, Nakai H. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. J Phys Chem B 2020; 124:8524-8539. [DOI: 10.1021/acs.jpcb.0c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Minori Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
9
|
Harris A, Lazaratos M, Siemers M, Watt E, Hoang A, Tomida S, Schubert L, Saita M, Heberle J, Furutani Y, Kandori H, Bondar AN, Brown LS. Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin. J Phys Chem B 2020; 124:4851-4872. [DOI: 10.1021/acs.jpcb.0c02767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Michalis Lazaratos
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ethan Watt
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Anh Hoang
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Luiz Schubert
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mattia Saita
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Siemers M, Lazaratos M, Karathanou K, Guerra F, Brown LS, Bondar AN. Bridge: A Graph-Based Algorithm to Analyze Dynamic H-Bond Networks in Membrane Proteins. J Chem Theory Comput 2019; 15:6781-6798. [DOI: 10.1021/acs.jctc.9b00697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Federico Guerra
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| |
Collapse
|
11
|
Kemmler L, Ibrahim M, Dobbek H, Zouni A, Bondar AN. Dynamic water bridging and proton transfer at a surface carboxylate cluster of photosystem II. Phys Chem Chem Phys 2019; 21:25449-25466. [DOI: 10.1039/c9cp03926k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A hydrogen-bond cluster at a negatively-charged protein interface with a bound protein and long-lived waters might be a proton storage site.
Collapse
Affiliation(s)
- Lukas Kemmler
- Freie Universität Berlin
- Department of Physics
- Theoretical Molecular Biophysics Group
- D-14195 Berlin
- Germany
| | - Mohamed Ibrahim
- Humboldt Universtät zu Berlin
- Institute for Biology, Structural Biology and Biochemistry
- Berlin
- Germany
| | - Holger Dobbek
- Humboldt Universtät zu Berlin
- Institute for Biology, Structural Biology and Biochemistry
- Berlin
- Germany
| | - Athina Zouni
- Humboldt Universtät zu Berlin
- Institute for Biology, Biophysics of Photosynthesis
- Berlin
- Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin
- Department of Physics
- Theoretical Molecular Biophysics Group
- D-14195 Berlin
- Germany
| |
Collapse
|
12
|
Adam S, Bondar AN. Mechanism by which water and protein electrostatic interactions control proton transfer at the active site of channelrhodopsin. PLoS One 2018; 13:e0201298. [PMID: 30086158 PMCID: PMC6080761 DOI: 10.1371/journal.pone.0201298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Channelrhodopsins are light-sensitive ion channels whose reaction cycles involve conformation-coupled transfer of protons. Understanding how channelrhodopsins work is important for applications in optogenetics, where light activation of these proteins triggers changes in the transmembrane potential across excitable membranes. A fundamental open question is how the protein environment ensures that unproductive proton transfer from the retinal Schiff base to the nearby carboxylate counterion is avoided in the resting state of the channel. To address this question, we performed combined quantum mechanical/molecular mechanical proton transfer calculations with explicit treatment of the surrounding lipid membrane. The free energy profiles computed for proton transfer to the counterion, either via a direct jump or mediated by a water molecule, demonstrate that, when retinal is all-trans, water and protein electrostatic interactions largely favour the protonated retinal Schiff base state. We identified a conserved lysine group as an essential structural element for the proton transfer energetics in channelrhodopsins.
Collapse
Affiliation(s)
- Suliman Adam
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| |
Collapse
|
13
|
Elghobashi-Meinhardt N, Phatak P, Bondar AN, Elstner M, Smith JC. Catalysis of Ground State cis[Formula: see text] trans Isomerization of Bacteriorhodopsin's Retinal Chromophore by a Hydrogen-Bond Network. J Membr Biol 2018. [PMID: 29516110 DOI: 10.1007/s00232-018-0027-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis-trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis-trans thermal isomerization barrier.
Collapse
Affiliation(s)
- Nadia Elghobashi-Meinhardt
- Department of Physical and Theoretical Chemistry, Theoretical Molecular Biophysics, Institute for Chemistry und Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, Berlin, 14169, Germany.
| | - Prasad Phatak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany.,BASF SE, Carl-Bosch Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Ana-Nicoleta Bondar
- Department of Physics, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institut of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O. Box 2008 MS6309, Oak Ridge, TN, 37831-6309, USA.,Department of Biochemistry and Molecular and Cellular Biology, University of Tennessee, Knoxville, USA
| |
Collapse
|
14
|
Bondar AN, Smith JC. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins. Photochem Photobiol 2017; 93:1336-1344. [DOI: 10.1111/php.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/20/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group; Department of Physics; Freie Universität Berlin; Berlin Germany
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics; Oak Ridge TN
- Department of Biochemistry and Cellular and Molecular Biology; University of Tennessee; Knoxville TN
| |
Collapse
|
15
|
Ge X, Gunner MR. Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin. Proteins 2016; 84:639-54. [DOI: 10.1002/prot.25013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Ge
- Physics Department; City College of New York; New York NY 10031
| | - M. R. Gunner
- Physics Department; City College of New York; New York NY 10031
| |
Collapse
|
16
|
Wolter T, Elstner M, Fischer S, Smith JC, Bondar AN. Mechanism by which Untwisting of Retinal Leads to Productive Bacteriorhodopsin Photocycle States. J Phys Chem B 2014; 119:2229-40. [DOI: 10.1021/jp505818r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tino Wolter
- Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Fischer
- IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - Jeremy C. Smith
- Center for
Molecular
Biophysics, University of Tenessee, Oak Ridge National Laboratory, PO BOX 2008 MS6164, Oak Ridge, Tennessee 37831-6164, United States
| | - Ana-Nicoleta Bondar
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
17
|
Cui Q, Elstner M. Density functional tight binding: values of semi-empirical methods in an ab initio era. Phys Chem Chem Phys 2014; 16:14368-77. [PMID: 24850383 PMCID: PMC4836871 DOI: 10.1039/c4cp00908h] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Semi-empirical (SE) methods are derived from Hartree-Fock (HF) or Density Functional Theory (DFT) by neglect and approximation of electronic integrals. Thereby, parameters are introduced which have to be determined from reference calculations and/or by fitting to available experimental data. This leads to computational methods that are about 2-3 orders of magnitude faster than the standard HF/DFT methods using medium sized basis sets while being about 3 orders of magnitude slower than empirical force field methods (Molecular Mechanics: MM). Therefore, SE methods are most appropriate for a specific range of applications. These include the study of systems that contain a large number of atoms and therefore being too large for ab initio or DFT methods and also problems where dynamic or entropic effects are particularly important. In the latter case, the errors made by considering a very limited number of molecular structures or neglecting entropic contributions can be much larger than the accuracy lost due to the use of SE methods. Another area where SE methods are attractive concerns the analysis of systems for which reliable MM models are not readily available. Therefore, even in an era when rapid progress is being made in ab initio methods, there is considerable interest in further developing SE methods. We illustrate this point by focusing on the discussion of recent development and application of the Density Functional Tight Binding method.
Collapse
|
18
|
Wang T, Facciotti MT, Duan Y. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin. PLoS One 2013; 8:e69882. [PMID: 23922839 PMCID: PMC3726731 DOI: 10.1371/journal.pone.0069882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB) are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti) configuration to an extracellular facing (13-cis, 15-syn) configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal’s C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.
Collapse
Affiliation(s)
- Ting Wang
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Marc T. Facciotti
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| | - Yong Duan
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| |
Collapse
|
19
|
Wolter T, Welke K, Phatak P, Bondar AN, Elstner M. Excitation energies of a water-bridged twisted retinal structure in the bacteriorhodopsin proton pump: a theoretical investigation. Phys Chem Chem Phys 2013; 15:12582-90. [DOI: 10.1039/c3cp44280b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Sun Y, Wang Y, Liu Z, Huang C, Yu C. Structural, proton-transfer, thermodynamic and nonlinear optical studies of (E)-2-((2-hydroxyphenyl)iminiomethyl)phenolate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:42-50. [PMID: 22652542 DOI: 10.1016/j.saa.2012.04.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 06/01/2023]
Abstract
Recently, the study of imine-bridged organics is interested in proton-transfer and photo-responsive material fields. Herein, we make a investigation on the structural, thermodynamic and nonlinear optical properties of (E)-2-((2-hydroxyphenyl)iminiomethyl)phenolate (HPIMP). The structural varieties of the studied compound are characterized by the X-ray single crystal diffraction and vibrational spectral techniques, as well as the vibrational spectral bands are precisely ascribed to the studied structure with the aid of DFT theoretical calculations. The experimental results of the FT-IR and X-ray measurements supply good proofs to reveal the proton-transfer procedures of HPIMP, and exhibit that the studied compound is a good proton-transfer model. In addition, the thermodynamic properties are obtained from the theoretical vibrations of the optimized HPIMP. The linear polarizability (α(0)) and first-order hyperpolarizabilities (β(0)) respectively present the values of 26.28 Å(3) and 7.41×10(-30) cm(5)/esu predicated theoretically by the DFT-B3lYP method at 6-31G(d) level, which indicates that the studied compound is a promising nonlinear optical material candidate.
Collapse
Affiliation(s)
- Yuxi Sun
- Research Center of New Energy & Materials, Mianyang Normal University, Mianyang 621000, PR China.
| | | | | | | | | |
Collapse
|
21
|
Ground-state properties of the retinal molecule: from quantum mechanical to classical mechanical computations of retinal proteins. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Clemens M, Phatak P, Cui Q, Bondar AN, Elstner M. Role of Arg82 in the early steps of the bacteriorhodopsin proton-pumping cycle. J Phys Chem B 2011; 115:7129-35. [PMID: 21561116 DOI: 10.1021/jp201865k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton-transfer reactions in the bacteriorhodopsin light-driven proton pump are coupled with structural rearrangements of protein amino acids and internal water molecules. It is generally thought that the first proton-transfer step from retinal Schiff base to the nearby Asp85 is coupled with movement of the Arg82 side chain away from Asp85 and toward the extracellular proton release group. This movement of Arg82 likely triggers the release of the proton from the proton release group to the extracellular bulk. The exact timing of the movement of Arg82 and how this movement is coupled with proton transfer are still not understood in molecular detail. Here, we address these questions by computing the free energy for the movement of the Arg82 side chain. The calculations indicate that protonation of Asp85 leads to a fast reorientation of the Arg82 side chain toward the extracellular proton release group.
Collapse
Affiliation(s)
- Maike Clemens
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
23
|
Bondar AN, Fischer S, Smith JC. Water Pathways in the Bacteriorhodopsin Proton Pump. J Membr Biol 2010; 239:73-84. [DOI: 10.1007/s00232-010-9329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/05/2010] [Indexed: 01/18/2023]
|
24
|
Excitation of the M intermediates of wild-type bacteriorhodopsin and mutant D96N: temperature dependence of absorbance, electric responses and proton movements. Theor Chem Acc 2010. [DOI: 10.1007/s00214-009-0632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Yamamoto M, Hayakawa N, Murakami M, Kouyama T. Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels. J Mol Biol 2009; 393:559-73. [PMID: 19712684 DOI: 10.1016/j.jmb.2009.08.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 11/16/2022]
Abstract
The hexagonal P622 crystal of bacteriorhodopsin, which is made up of stacked membranes, is stable provided that the precipitant concentration in the soaking solution is higher than a critical value (i.e., 1.5 M ammonium sulfate). Diffraction data showed that the crystal lattice shrank linearly with increasing precipitant concentration, due primarily to narrowing of intermembrane spaces. Although the crystal shrinkage did not affect the rate of formation of the photoreaction M intermediate, its lifetime increased exponentially with the precipitant concentration. It was suggested that the energetic barrier of the M-to-N transition becomes higher when the motional freedom of the EF loop is reduced by crystal lattice force. As a result of this property, the M state accumulated predominantly when the crystal that was soaked at a high precipitant concentration was illuminated at room temperature. Structural data obtained at various pH levels showed that the overall structure of M is not strongly dependent on pH, except that Glu194 and Glu204 in the proton release complex are more separated at pH 7 than at pH 4.4. This result suggests that light-induced disruption of the paired structure of Glu194 and Glu204 is incomplete when external pH is lower than the pK(a) value of the proton release group in the M state.
Collapse
Affiliation(s)
- Masataka Yamamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
26
|
Babitzki G, Mathias G, Tavan P. The Infrared Spectra of the Retinal Chromophore in Bacteriorhodopsin Calculated by a DFT/MM Approach. J Phys Chem B 2009; 113:10496-508. [DOI: 10.1021/jp902432e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Babitzki
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität Oettingenstr. 67, 80538 München, Germany
| | - G. Mathias
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität Oettingenstr. 67, 80538 München, Germany
| | - P. Tavan
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität Oettingenstr. 67, 80538 München, Germany
| |
Collapse
|
27
|
Bondar AN, Smith JC. Water Molecules in Short- and Long-Distance Proton Transfer Steps of Bacteriorhodopsin Proton Pumping. Isr J Chem 2009. [DOI: 10.1560/ijc.49.2.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Phatak P, Frähmcke JS, Wanko M, Hoffmann M, Strodel P, Smith J, Suhai S, Bondar AN, Elstner M. Long-distance proton transfer with a break in the bacteriorhodopsin active site. J Am Chem Soc 2009; 131:7064-78. [PMID: 19405533 PMCID: PMC2746972 DOI: 10.1021/ja809767v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin is a proton-pumping membrane protein found in the plasma membrane of the archaeon Halobacterium salinarium. Light-induced isomerization of the retinal chromophore from all-trans to 13-cis leads to a sequence of five conformation-coupled proton transfer steps and the net transport of one proton from the cytoplasmic to the extracellular side of the membrane. The mechanism of the long-distance proton transfer from the primary acceptor Asp85 to the extracellular proton release group during the O --> bR is poorly understood. Experiments suggest that this long-distance transfer could involve a transient state [O] in which the proton resides on the intermediate carrier Asp212. To assess whether the transient protonation of Asp212 participates in the deprotonation of Asp85, we performed hybrid Quantum Mechanics/Molecular Mechanics proton transfer calculations using different protein structures and with different retinal geometries and active site water molecules. The structural models were assessed by computing UV-vis excitation energies and C=O vibrational frequencies. The results indicate that a transient [O] conformer with protonated Asp212 could indeed be sampled during the long-distance proton transfer to the proton release group. Our calculations suggest that, in the starting proton transfer state O, the retinal is strongly twisted and at least three water molecules are present in the active site.
Collapse
Affiliation(s)
- Prasad Phatak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Jan S. Frähmcke
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Marius Wanko
- BCCMS, Universität Bremen, D-28334 Bremen, Germany
| | | | - Paul Strodel
- Accelrys Ltd., Cambridge CB4 0WN, United Kingdom
| | - Jeremy Smith
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120, Heidelberg, Germany
- Center for Molecular Biophysics, Oak Ridge National Laboratory, PO BOX 2008 MS6164, Oak Ridge, Tennessee 37831, USA
- Department of Biochemistry and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Ave, Knoxville Tennessee 37996, USA
| | - Sándor Suhai
- Molecular Biophysics Department, German Cancer Research Institute, Im Neuheimer Feld 280, D-69120, Heidelberg, Germany
| | - Ana-Nicoleta Bondar
- Molecular Biophysics Department, German Cancer Research Institute, Im Neuheimer Feld 280, D-69120, Heidelberg, Germany
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120, Heidelberg, Germany
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Med. Sci. I, D-347, Irvine, CA 92697, USA
| | - Marcus Elstner
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Molecular Biophysics Department, German Cancer Research Institute, Im Neuheimer Feld 280, D-69120, Heidelberg, Germany
| |
Collapse
|
29
|
|
30
|
Lórenz-Fonfría VA, Kandori H. Spectroscopic and Kinetic Evidence on How Bacteriorhodopsin Accomplishes Vectorial Proton Transport under Functional Conditions. J Am Chem Soc 2009; 131:5891-901. [DOI: 10.1021/ja900334c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Víctor A. Lórenz-Fonfría
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
31
|
Tóth-Boconádi R, Dér A, Fábián L, Taneva SG, Keszthelyi L. Excitation of the M Intermediates of Bacteriorhodopsin. Photochem Photobiol 2009; 85:609-13. [DOI: 10.1111/j.1751-1097.2008.00521.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Wassenaar TA, Daura X, Padrós E, Mark AE. Calcium binding to the purple membrane: A molecular dynamics study. Proteins 2009; 74:669-81. [PMID: 18704943 DOI: 10.1002/prot.22182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purple membrane (PM) is a specialized membrane patch found in halophilic archaea, containing the photoreceptor bacteriorhodopsin (bR). It is long known that calcium ions bind to the PM, but their position and role remain elusive to date. Molecular dynamics simulations in conjunction with a highly detailed model of the PM have been used to investigate the stability of calcium ions placed at three proposed cation binding sites within bR, one near the Schiff base, one in the region of the proton release group, and one near Glu9. The simulations suggest that, of the sites investigated, the binding of calcium ions was most likely at the proton release group. Binding in the region of the Schiff base, while possible, was associated with significant changes in local geometry. Calcium ions placed near Glu9 in the interior of bR (simultaneously to a Ca(2+) near the Schiff base and another one near the Glu194-Glu204 site) were not stable. The results obtained are discussed in relation to recent experimental observations and theoretical considerations.
Collapse
Affiliation(s)
- Tsjerk A Wassenaar
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
33
|
“Multi-Scale” QM/MM Methods with Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB). ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-9956-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
34
|
Bondar AN, Baudry J, Suhai S, Fischer S, Smith JC. Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions. J Phys Chem B 2008; 112:14729-41. [DOI: 10.1021/jp801916f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana-Nicoleta Bondar
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany, Molecular Biophysics Department, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, University of California at Irvine, Department of Physiology and Biophysics and the Center for Biomembrane Systems, Med. Sci. I, D-374, Irvine, California 92697-4560, University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge
| | - Jerome Baudry
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany, Molecular Biophysics Department, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, University of California at Irvine, Department of Physiology and Biophysics and the Center for Biomembrane Systems, Med. Sci. I, D-374, Irvine, California 92697-4560, University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge
| | - Sándor Suhai
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany, Molecular Biophysics Department, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, University of California at Irvine, Department of Physiology and Biophysics and the Center for Biomembrane Systems, Med. Sci. I, D-374, Irvine, California 92697-4560, University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge
| | - Stefan Fischer
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany, Molecular Biophysics Department, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, University of California at Irvine, Department of Physiology and Biophysics and the Center for Biomembrane Systems, Med. Sci. I, D-374, Irvine, California 92697-4560, University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge
| | - Jeremy C. Smith
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany, Molecular Biophysics Department, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, University of California at Irvine, Department of Physiology and Biophysics and the Center for Biomembrane Systems, Med. Sci. I, D-374, Irvine, California 92697-4560, University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge
| |
Collapse
|
35
|
Morgan JE, Gennis RB, Maeda A. A role for internal water molecules in proton affinity changes in the Schiff base and Asp85 for one-way proton transfer in bacteriorhodopsin. Photochem Photobiol 2008; 84:1038-45. [PMID: 18557823 DOI: 10.1111/j.1751-1097.2008.00377.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Light-induced proton pumping in bacteriorhodospin is carried out through five proton transfer steps. We propose that the proton transfer to Asp85 from the Schiff base in the L-to-M transition is accompanied by the relocation of a water cluster on the cytoplasmic side of the Schiff base from a site close to the Schiff base in L to the Phe219-Thr46 region in M. The water cluster present in L, formed at 170 K, is more rigid than that at room temperature. This may be responsible for blocking the conversion of L to M at 170 K. In the photocycle at room temperature, this water cluster returns to the site close to the Schiff base in N, with a rigid structure similar to that of L at 170 K. The increase in the proton affinity of Asp85, which is a prerequisite for the one-way proton transfer in the M-to-N transition, is suggested to be facilitated by a structural change which disrupts interactions between Asp212 and the Schiff base, and between Asp212 and Arg82. We propose that this liberation of Asp212 is accompanied by a rearrangement of the structure of water molecules between Asp85 and Asp212, stabilizing the protonated Asp85 in M.
Collapse
Affiliation(s)
- Joel E Morgan
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | |
Collapse
|