1
|
Barchet C, Fréchin L, Holvec S, Hazemann I, von Loeffelholz O, Klaholz BP. Focused classifications and refinements in high-resolution single particle cryo-EM analysis. J Struct Biol 2023; 215:108015. [PMID: 37659578 DOI: 10.1016/j.jsb.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
Recent advances in cryo electron microscopy (cryo-EM) and image processing provide new opportunities to analyse drug targets at high resolution. However, structural heterogeneity limits resolution in many practical cases, hence restricting the level at which structural details can be analysed and drug design be performed. As structural disorder is not spread throughout the entire structure of a given macromolecular complex but instead is found in certain regions that move with respect to others and covering molecular scales from domain conformational changes up to the level of side chain conformations in ligand binding pockets, it is possible to focus the attention on those regions and the associated relative movements. Here we show how the usage of focused classifications and refinements provide insights into global conformational arrangements, exemplified on the human ribosome and on the cannabinoid G protein coupled receptor (GPCR), and how they can improve the local map resolution from an essentially disordered region to the 3-4 Å and finally to the 2 Å resolution range. A systematic analysis with variable spherical masks during focused refinement is presented showing that the choice of an optimal mask size helps refining to high resolution. This study covers several practical approaches on 4 examples illustrating how important mask size & shape and including neighbouring structural elements are for a focused analysis of a macromolecular complex. Such methods will be crucial for cryo-EM structure-based drug design of various medical targets and are applicable to single particle cryo-EM and electron tomography data.
Collapse
Affiliation(s)
- Charles Barchet
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Samuel Holvec
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Fréchin L, Holvec S, von Loeffelholz O, Hazemann I, Klaholz BP. High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome. J Struct Biol 2023; 215:107905. [PMID: 36241135 DOI: 10.1016/j.jsb.2022.107905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Recent technological advances in cryo electron microscopy (cryo-EM) have led to new opportunities in the structural biology field. Here we benchmark the performance of two 300 kV latest-generation cryo electron microscopes, Titan Krios G4 from Thermofisher Scientific and CRYO ARM 300 from Jeol, with regards to achieving high resolution single particle reconstructions on a real case sample. We compare potentially limiting factors such as drift rates, astigmatism & coma aberrations and performance during image processing and show that both microscopes, while comprising rather different technical setups & parameter settings and equipped with different types of energy filters & cameras, achieve a resolution of around 2 Å on the human ribosome, a non-symmetric object which constitutes a key drug target. Astigmatism correction, CTF refinement and correction of higher order aberrations through refinement in separate optics groups helped to account for astigmatism/coma caused by beam tilting during multi-spot and multi-hole acquisition in neighbouring holes without stage movement. The obtained maps resolve Mg2+ ions, water molecules, inhibitors and side-chains including chemical modifications. The fact that both instruments can resolve such detailed features will greatly facilitate understanding molecular mechanisms of various targets and helps in cryo-EM structure based drug design. The methods and analysis tools used here will be useful also to characterize existing instruments and optimize data acquisition settings and are applicable broadly to other drug targets in structural biology.
Collapse
Affiliation(s)
- Léo Fréchin
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Samuel Holvec
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Wu JG, Yan Y, Zhang DX, Liu BW, Zheng QB, Xie XL, Liu SQ, Ge SX, Hou ZG, Xia NS. Machine Learning for Structure Determination in Single-Particle Cryo-Electron Microscopy: A Systematic Review. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:452-472. [PMID: 34932487 DOI: 10.1109/tnnls.2021.3131325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, single-particle cryo-electron microscopy (cryo-EM) has become an indispensable method for determining macromolecular structures at high resolution to deeply explore the relevant molecular mechanism. Its recent breakthrough is mainly because of the rapid advances in hardware and image processing algorithms, especially machine learning. As an essential support of single-particle cryo-EM, machine learning has powered many aspects of structure determination and greatly promoted its development. In this article, we provide a systematic review of the applications of machine learning in this field. Our review begins with a brief introduction of single-particle cryo-EM, followed by the specific tasks and challenges of its image processing. Then, focusing on the workflow of structure determination, we describe relevant machine learning algorithms and applications at different steps, including particle picking, 2-D clustering, 3-D reconstruction, and other steps. As different tasks exhibit distinct characteristics, we introduce the evaluation metrics for each task and summarize their dynamics of technology development. Finally, we discuss the open issues and potential trends in this promising field.
Collapse
|
5
|
Harastani M, Eltsov M, Leforestier A, Jonic S. HEMNMA-3D: Cryo Electron Tomography Method Based on Normal Mode Analysis to Study Continuous Conformational Variability of Macromolecular Complexes. Front Mol Biosci 2021; 8:663121. [PMID: 34095222 PMCID: PMC8170028 DOI: 10.3389/fmolb.2021.663121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
Cryogenic electron tomography (cryo-ET) allows structural determination of biomolecules in their native environment (in situ). Its potential of providing information on the dynamics of macromolecular complexes in cells is still largely unexploited, due to the challenges of the data analysis. The crowded cell environment and continuous conformational changes of complexes make difficult disentangling the data heterogeneity. We present HEMNMA-3D, which is, to the best of our knowledge, the first method for analyzing cryo electron subtomograms in terms of continuous conformational changes of complexes. HEMNMA-3D uses a combination of elastic and rigid-body 3D-to-3D iterative alignments of a flexible 3D reference (atomic structure or electron microscopy density map) to match the conformation, orientation, and position of the complex in each subtomogram. The elastic matching combines molecular mechanics simulation (Normal Mode Analysis of the 3D reference) and experimental, subtomogram data analysis. The rigid-body alignment includes compensation for the missing wedge, due to the limited tilt angle of cryo-ET. The conformational parameters (amplitudes of normal modes) of the complexes in subtomograms obtained through the alignment are processed to visualize the distribution of conformations in a space of lower dimension (typically, 2D or 3D) referred to as space of conformations. This allows a visually interpretable insight into the dynamics of the complexes, by calculating 3D averages of subtomograms with similar conformations from selected (densest) regions and by recording movies of the 3D reference's displacement along selected trajectories through the densest regions. We describe HEMNMA-3D and show its validation using synthetic datasets. We apply HEMNMA-3D to an experimental dataset describing in situ nucleosome conformational variability. HEMNMA-3D software is available freely (open-source) as part of ContinuousFlex plugin of Scipion V3.0 (http://scipion.i2pc.es).
Collapse
Affiliation(s)
- Mohamad Harastani
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mikhail Eltsov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Saclay, Paris, France
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
6
|
Umrekar TR, Cohen E, Drobnič T, Gonzalez-Rodriguez N, Beeby M. CryoEM of bacterial secretion systems: A primer for microbiologists. Mol Microbiol 2020; 115:366-382. [PMID: 33140482 DOI: 10.1111/mmi.14637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
"CryoEM" has come of age, enabling considerable structural insights into many facets of molecular biology. Here, we present a primer for microbiologists to understand the capabilities and limitations of two complementary cryoEM techniques for studying bacterial secretion systems. The first, single particle analysis, determines the structures of purified protein complexes to resolutions sufficient for molecular modeling, while the second, electron cryotomography and subtomogram averaging, tends to determine more modest resolution structures of protein complexes in intact cells. We illustrate these abilities with examples of insights provided into how secretion systems work by cryoEM, with a focus on type III secretion systems.
Collapse
Affiliation(s)
| | - Eli Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Tina Drobnič
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
7
|
Chung SC, Lin HH, Niu PY, Huang SH, Tu IP, Chang WH. Pre-pro is a fast pre-processor for single-particle cryo-EM by enhancing 2D classification. Commun Biol 2020; 3:508. [PMID: 32917929 PMCID: PMC7486923 DOI: 10.1038/s42003-020-01229-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
2D classification plays a pivotal role in analyzing single particle cryo-electron microscopy images. Here, we introduce a simple and loss-less pre-processor that incorporates a fast dimension-reduction (2SDR) de-noiser to enhance 2D classification. By implementing this 2SDR pre-processor prior to a representative classification algorithm like RELION and ISAC, we compare the performances with and without the pre-processor. Tests on multiple cryo-EM experimental datasets show the pre-processor can make classification faster, improve yield of good particles and increase the number of class-average images to generate better initial models. Testing on the nanodisc-embedded TRPV1 dataset with high heterogeneity using a 3D reconstruction workflow with an initial model from class-average images highlights the pre-processor improves the final resolution to 2.82 Å, close to 0.9 Nyquist. Those findings and analyses suggest the 2SDR pre-processor, of minimal cost, is widely applicable for boosting 2D classification, while its generalization to accommodate neural network de-noisers is envisioned.
Collapse
Affiliation(s)
- Szu-Chi Chung
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Hsin-Hung Lin
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Po-Yao Niu
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Shih-Hsin Huang
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
8
|
Shi J, Zeng X, Jiang R, Jiang T, Xu M. A simulated annealing approach for resolution guided homogeneous cryo-electron microscopy image selection. QUANTITATIVE BIOLOGY 2020; 8:51-63. [PMID: 32477613 PMCID: PMC7259590 DOI: 10.1007/s40484-019-0191-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/10/2019] [Accepted: 11/08/2019] [Indexed: 10/24/2022]
Abstract
BACKGROUND Cryo-electron microscopy (Cryo-EM) and tomography (Cryo-ET) have emerged as important imaging techniques for studying structures of macromolecular complexes. In 3D reconstruction of large macromolecular complexes, many 2D projection images of macromolecular complex particles are usually acquired with low signal-to-noise ratio. Therefore, it is meaningful to select multiple images containing the same structure with identical orientation. The selected images are averaged to produce a higher-quality representation of the underlying structure with improved resolution. Existing approaches of selecting such images have limited accuracy and speed. METHODS We propose a simulated annealing-based algorithm (SA) to pick the homogeneous image set with best average. Its performance is compared with two baseline methods based on both 2D and 3D datasets. When tested on simulated and experimental 3D Cryo-ET images of Ribosome complex, SA sometimes stopped at a local optimal solution. Restarting is applied to settle this difficulty and significantly improved the performance of SA on 3D datasets. RESULTS Experimented on simulated and experimental 2D Cryo-EM images of Ribosome complex datasets respectively with SNR = 10 and SNR = 0.5, our method achieved better accuracy in terms of F-measure, resolution score, and time cost than two baseline methods. Additionally, SA shows its superiority when the proportion of homogeneous images decreases. CONCLUSIONS SA is introduced for homogeneous image selection to realize higher accuracy with faster processing speed. Experiments on both simulated and real 2D Cryo-EM and 3D Cryo-ET images demonstrated that SA achieved expressively better performance. This approach serves as an important step for improving the resolution of structural recovery of macromolecular complexes captured by Cryo-EM and Cryo-ET.
Collapse
Affiliation(s)
- Jie Shi
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Xiangrui Zeng
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rui Jiang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California-Riverside, Riverside, CA 92521, USA
| | - Min Xu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Harastani M, Sorzano COS, Jonić S. Hybrid Electron Microscopy Normal Mode Analysis with Scipion. Protein Sci 2019; 29:223-236. [PMID: 31693263 DOI: 10.1002/pro.3772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) method was introduced in 2014. HEMNMA computes normal modes of a reference model (an atomic structure or an electron microscopy map) of a molecular complex and uses this model and its normal modes to analyze single-particle images of the complex to obtain information on its continuous conformational changes, by determining the full distribution of conformational variability from the images. An advantage of HEMNMA is a simultaneous determination of all parameters of each image (particle conformation, orientation, and shift) through their iterative optimization, which allows applications of HEMNMA even when the effects of conformational changes dominate those of orientational changes. HEMNMA was first implemented in Xmipp and was using MATLAB for statistical analysis of obtained conformational distributions and for fitting of underlying trajectories of conformational changes. A HEMNMA implementation independent of MATLAB is now available as part of a plugin of Scipion V2.0 (http://scipion.i2pc.es). This plugin, named ContinuousFlex, can be installed by following the instructions at https://pypi.org/project/scipion-em-continuousflex. In this article, we present this new HEMNMA software, which is user-friendly, totally free, and open-source. STATEMENT FOR A BROADER AUDIENCE: This article presents Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) software that allows analyzing single-particle images of a complex to obtain information on continuous conformational changes of the complex, by determining the full distribution of conformational variability from the images. The HEMNMA software is user-friendly, totally free, open-source, and available as part of ContinuousFlex plugin (https://pypi.org/project/scipion-em-continuousflex) of Scipion V2.0 (http://scipion.i2pc.es).
Collapse
Affiliation(s)
- Mohamad Harastani
- Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | | | - Slavica Jonić
- Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
10
|
Abstract
Ribosomes are biological nanomachine that synthesise all proteins within a cell. It took decades to reveal the architecture of this essential cellular component. To understand the structure -function relationship of this nanomachine needed the utilisisation of different biochemical, biophysical and structural techniques. Structural studies combined with mutagenesis of the different ribosomal complexes comprising various RNAs and proteins enabled us to understand how this machine works inside a cell. Nowadays quite a number of ribosomal structures were published that confirmed biochemical studies on particular steps of protein synthesis by the ribosome . Four major steps were identified: initiation , elongation, termination and recycling. These steps lead us to the important question how the ribosome function can be regulated. Advances in technology for cryo electron microscopy: sample preparations, image recording, developments in algorithms for image analysis and processing significantly helped in revelation of structural details of the ribosome . We now have a library of ribosome structures from prokaryotes to eukaryotes that enable us to understand the complex mechanics of this nanomachine. As this structural library continues to grow, we gradually improve our understanding of this process and how it can be regulated and how the specific ribosomes can be stalled or activated, or completely disabled. This article provides a comprehensive overview of ribosomal structures that represent structural snapshots of the ribosome at its different functional states. Better understanding rises more particular questions that have to be addressed by determination structures of more complexes.Synopsis: Structural biology of the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
11
|
Natesh R. Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [PMCID: PMC7121590 DOI: 10.1007/978-3-030-05282-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.
Collapse
|
12
|
Natesh R, Clare DK, Farr GW, Horwich AL, Saibil HR. A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin. Int J Biol Macromol 2018; 118:671-675. [PMID: 29959019 PMCID: PMC6096091 DOI: 10.1016/j.ijbiomac.2018.06.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
Abstract
The chaperonins (GroEL and GroES in Escherichia coli) are ubiquitous molecular chaperones that assist a subset of essential substrate proteins to undergo productive folding to the native state. Using single particle cryo EM and image processing we have examined complexes of E. coli GroEL with the stringently GroE-dependent substrate enzyme RuBisCO from Rhodospirillum rubrum. Here we present snapshots of non-native RuBisCO - GroEL complexes. We observe two distinct substrate densities in the binary complex reminiscent of the two-domain structure of the RuBisCO subunit, so that this may represent a captured form of an early folding intermediate. The occupancy of the complex is consistent with the negative cooperativity of GroEL with respect to substrate binding, in accordance with earlier mass spectroscopy studies.
Collapse
Affiliation(s)
- Ramanathan Natesh
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK
| | - Daniel K Clare
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK
| | - George W Farr
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Arthur L Horwich
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Helen R Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
13
|
Asymmetric Cryo-EM Structure of Anthrax Toxin Protective Antigen Pore with Lethal Factor N-Terminal Domain. Toxins (Basel) 2017; 9:toxins9100298. [PMID: 28937604 PMCID: PMC5666345 DOI: 10.3390/toxins9100298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
The anthrax lethal toxin consists of protective antigen (PA) and lethal factor (LF). Understanding both the PA pore formation and LF translocation through the PA pore is crucial to mitigating and perhaps preventing anthrax disease. To better understand the interactions of the LF-PA engagement complex, the structure of the LFN-bound PA pore solubilized by a lipid nanodisc was examined using cryo-EM. CryoSPARC was used to rapidly sort particle populations of a heterogeneous sample preparation without imposing symmetry, resulting in a refined 17 Å PA pore structure with 3 LFN bound. At pH 7.5, the contributions from the three unstructured LFN lysine-rich tail regions do not occlude the Phe clamp opening. The open Phe clamp suggests that, in this translocation-compromised pH environment, the lysine-rich tails remain flexible and do not interact with the pore lumen region.
Collapse
|
14
|
von Loeffelholz O, Natchiar SK, Djabeur N, Myasnikov AG, Kratzat H, Ménétret JF, Hazemann I, Klaholz BP. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Curr Opin Struct Biol 2017; 46:140-148. [PMID: 28850874 DOI: 10.1016/j.sbi.2017.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022]
Abstract
Cryo electron microscopy (cryo-EM) historically has had a strong impact on the structural and mechanistic analysis of protein synthesis by the prokaryotic and eukaryotic ribosomes. Vice versa, studying ribosomes has helped moving forwards many methodological aspects in single particle cryo-EM, at the level of automated data collection and image processing including advanced techniques for particle sorting to address structural and compositional heterogeneity. Here we review some of the latest ribosome structures, where cryo-EM allowed gaining unprecedented insights based on 3D structure sorting with focused classification and refinement methods helping to reach local resolution levels better than 3Å. Such high-resolution features now enable the analysis of drug interactions with RNA and protein side-chains including even the visualization of chemical modifications of the ribosomal RNA. These advances represent a major breakthrough in structural biology and show the strong potential of cryo-EM beyond the ribosome field including for structure-based drug design.
Collapse
Affiliation(s)
- Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France. mailto:
| |
Collapse
|
15
|
Sanchez Sorzano CO, Alvarez-Cabrera AL, Kazemi M, Carazo JM, Jonić S. StructMap: Elastic Distance Analysis of Electron Microscopy Maps for Studying Conformational Changes. Biophys J 2017; 110:1753-1765. [PMID: 27119636 DOI: 10.1016/j.bpj.2016.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions.
Collapse
Affiliation(s)
- Carlos Oscar Sanchez Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Ana Lucia Alvarez-Cabrera
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Mohsen Kazemi
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Jose María Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Slavica Jonić
- IMPMC, Sorbonne Universités, CNRS UMR 7590, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris, France.
| |
Collapse
|
16
|
Structural Study of Heterogeneous Biological Samples by Cryoelectron Microscopy and Image Processing. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1032432. [PMID: 28191458 PMCID: PMC5274696 DOI: 10.1155/2017/1032432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
Abstract
In living organisms, biological macromolecules are intrinsically flexible and naturally exist in multiple conformations. Modern electron microscopy, especially at liquid nitrogen temperatures (cryo-EM), is able to visualise biocomplexes in nearly native conditions and in multiple conformational states. The advances made during the last decade in electronic technology and software development have led to the revelation of structural variations in complexes and also improved the resolution of EM structures. Nowadays, structural studies based on single particle analysis (SPA) suggests several approaches for the separation of different conformational states and therefore disclosure of the mechanisms for functioning of complexes. The task of resolving different states requires the examination of large datasets, sophisticated programs, and significant computing power. Some methods are based on analysis of two-dimensional images, while others are based on three-dimensional studies. In this review, we describe the basic principles implemented in the various techniques that are currently used in the analysis of structural conformations and provide some examples of successful applications of these methods in structural studies of biologically significant complexes.
Collapse
|
17
|
Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. Curr Opin Struct Biol 2017; 43:114-121. [PMID: 28088125 DOI: 10.1016/j.sbi.2016.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
Abstract
Thanks to latest technical advances in cryo-electron microscopy (cryo-EM), structures of macromolecular complexes (viruses, ribosomes, etc.) are now often obtained at near-atomic resolution. Also, studies of conformational changes of complexes, in connection with their function, are gaining ground. Conformational variability analysis is usually done by classifying images in a number of discrete classes supposedly representing all conformational states present in the specimen. However, discrete classes cannot be meaningfully defined when the conformational change is continuous (the specimen contains a continuum of states instead of a few discrete states). For such cases, first image analysis methods that explicitly consider continuous conformational changes were recently developed. The latest developments in cryo-EM image analysis methods for conformational variability analysis are the focus of this review.
Collapse
|
18
|
Xu Y, Wu J, Yin CC, Mao Y. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm. PLoS One 2016; 11:e0167765. [PMID: 27959895 PMCID: PMC5154524 DOI: 10.1371/journal.pone.0167765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.
Collapse
Affiliation(s)
- Yaofang Xu
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiayi Wu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Chang-Cheng Yin
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Youdong Mao
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China.,Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
19
|
Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes. Comput Struct Biotechnol J 2016; 14:385-390. [PMID: 27800126 PMCID: PMC5072154 DOI: 10.1016/j.csbj.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 11/23/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) has for a long time been a technique of choice for determining structure of large and flexible macromolecular complexes that were difficult to study by other experimental techniques such as X-ray crystallography or nuclear magnetic resonance. However, a fast development of instruments and software for cryo-EM in the last decade has allowed that a large range of complexes can be studied by cryo-EM, and that their structures can be obtained at near-atomic resolution, including the structures of small complexes (e.g., membrane proteins) whose size was earlier an obstacle to cryo-EM. Image analysis to identify multiple coexisting structures in the same specimen (multiconformation reconstruction) is now routinely done both to solve structures at near-atomic resolution and to study conformational dynamics. Methods for multiconformation reconstruction and latest examples of their applications are the focus of this review.
Collapse
|
20
|
Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 2016; 35:1613-27. [PMID: 27288401 PMCID: PMC4969574 DOI: 10.15252/embj.201694024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The type VI secretion system (T6SS) is a supra‐molecular bacterial complex that resembles phage tails. It is a killing machine which fires toxins into target cells upon contraction of its TssBC sheath. Here, we show that TssA1 is a T6SS component forming dodecameric ring structures whose dimensions match those of the TssBC sheath and which can accommodate the inner Hcp tube. The TssA1 ring complex binds the T6SS sheath and impacts its behaviour in vivo. In the phage, the first disc of the gp18 sheath sits on a baseplate wherein gp6 is a dodecameric ring. We found remarkable sequence and structural similarities between TssA1 and gp6 C‐termini, and propose that TssA1 could be a baseplate component of the T6SS. Furthermore, we identified similarities between TssK1 and gp8, the former interacting with TssA1 while the latter is found in the outer radius of the gp6 ring. These observations, combined with similarities between TssF and gp6N‐terminus or TssG and gp53, lead us to propose a comparative model between the phage baseplate and the T6SS.
Collapse
Affiliation(s)
- Sara Planamente
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, UK
| | - Osman Salih
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, UK
| | - David Albesa-Jové
- Unidad de Biofísica, Departamento de Bioquímica, Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU) Universidad del País Vasco, Leioa, Bizkaia, Spain Structural Biology Unit, CIC bioGUNE Bizkaia Technology Park, Derio, Spain
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
21
|
Reboul CF, Bonnet F, Elmlund D, Elmlund H. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images. Structure 2016; 24:988-96. [PMID: 27184214 DOI: 10.1016/j.str.2016.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023]
Abstract
A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry Molecular Biology, Monash University, Clayton 3800, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Clayton 3800, Australia
| | - Frederic Bonnet
- Department of Biochemistry Molecular Biology, Monash University, Clayton 3800, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Clayton 3800, Australia
| | - Dominika Elmlund
- Department of Biochemistry Molecular Biology, Monash University, Clayton 3800, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Clayton 3800, Australia.
| | - Hans Elmlund
- Department of Biochemistry Molecular Biology, Monash University, Clayton 3800, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Clayton 3800, Australia.
| |
Collapse
|
22
|
Elad N, De Strooper B, Lismont S, Hagen W, Veugelen S, Arimon M, Horré K, Berezovska O, Sachse C, Chávez-Gutiérrez L. The dynamic conformational landscape of gamma-secretase. J Cell Sci 2016; 128:589-98. [PMID: 25501811 PMCID: PMC4311135 DOI: 10.1242/jcs.164384] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The structure and function of the gamma-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the gamma-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure and active enzyme. Using single particle electron microscopy, we analyzed the gamma-secretase structure and its conformational variability. Under steady-state conditions, the complex adopts three major conformations, which differ in overall compactness and relative position of the nicastrin ectodomain. Occupancy of the active or substrate-binding sites by inhibitors differentially stabilizes subpopulations of particles with compact conformations, whereas a mutation linked to familial Alzheimer disease results in enrichment of extended-conformation complexes with increased flexibility. Our study presents the csecretase complex as a dynamic population of interconverting conformations, involving rearrangements at the nanometer scale and a high level of structural interdependence between subunits. The fact that protease inhibition or clinical mutations, which affect amyloid beta (Abeta) generation, enrich for particular subpopulations of conformers indicates the functional relevance of the observed dynamic changes, which are likely to be instrumental for highly allosteric behavior of the enzyme.
Collapse
Affiliation(s)
- Nadav Elad
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Authors for correspondence (; ; )
| | - Sam Lismont
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Wim Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Sarah Veugelen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Muriel Arimon
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Katrien Horré
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Oksana Berezovska
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
- Authors for correspondence (; ; )
| | - Lucía Chávez-Gutiérrez
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- Authors for correspondence (; ; )
| |
Collapse
|
23
|
Frank J, Ourmazd A. Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 2016; 100:61-7. [PMID: 26884261 DOI: 10.1016/j.ymeth.2016.02.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/01/2022] Open
Abstract
Cryo-electron microscopy, when combined with single-particle reconstruction, is a powerful method for studying macromolecular structure. Recent developments in detector technology have pushed the resolution into a range comparable to that of X-ray crystallography. However, cryo-EM is able to separate and thus recover the structure of each of several discrete structures present in the sample. For the more general case involving continuous structural changes, a novel technique employing manifold embedding has been recently demonstrated. Potentially, the entire work-cycle of a molecular machine may be observed as it passes through a continuum of states, and its free-energy landscape may be mapped out. This technique will be outlined and discussed in the context of its application to a large single-particle dataset of yeast ribosomes.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States; Department of Biological Sciences, Columbia University, New York, NY 10027, United States.
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI 53211, United States.
| |
Collapse
|
24
|
Ilca SL, Kotecha A, Sun X, Poranen MM, Stuart DI, Huiskonen JT. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat Commun 2015; 6:8843. [PMID: 26534841 PMCID: PMC4667630 DOI: 10.1038/ncomms9843] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022] Open
Abstract
Electron cryomicroscopy can yield near-atomic resolution structures of highly ordered macromolecular complexes. Often however some subunits bind in a flexible manner, have different symmetry from the rest of the complex, or are present in sub-stoichiometric amounts, limiting the attainable resolution. Here we report a general method for the localized three-dimensional reconstruction of such subunits. After determining the particle orientations, local areas corresponding to the subunits can be extracted and treated as single particles. We demonstrate the method using three examples including a flexible assembly and complexes harbouring subunits with either partial occupancy or mismatched symmetry. Most notably, the method allows accurate fitting of the monomeric RNA-dependent RNA polymerase bound at the threefold axis of symmetry inside a viral capsid, revealing for the first time its exact orientation and interactions with the capsid proteins. Localized reconstruction is expected to provide novel biological insights in a range of challenging biological systems. Electron cryomicroscopy can allow the elucidation of macromolecular structures; however, mismatches in symmetry between different components limit the attainable resolution. Here, the authors set out a computational method for extracting and retaining information from such components.
Collapse
|
25
|
Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, Rispal D, Eltschinger S, Robinson GC, Thore S, Aebersold R, Schaffitzel C, Loewith R. Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell 2015; 58:977-88. [PMID: 26028537 DOI: 10.1016/j.molcel.2015.04.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Target of Rapamycin (TOR) plays central roles in the regulation of eukaryote growth as the hub of two essential multiprotein complexes: TORC1, which is rapamycin-sensitive, and the lesser characterized TORC2, which is not. TORC2 is a key regulator of lipid biosynthesis and Akt-mediated survival signaling. In spite of its importance, its structure and the molecular basis of its rapamycin insensitivity are unknown. Using crosslinking-mass spectrometry and electron microscopy, we determined the architecture of TORC2. TORC2 displays a rhomboid shape with pseudo-2-fold symmetry and a prominent central cavity. Our data indicate that the C-terminal part of Avo3, a subunit unique to TORC2, is close to the FKBP12-rapamycin-binding domain of Tor2. Removal of this sequence generated a FKBP12-rapamycin-sensitive TORC2 variant, which provides a powerful tool for deciphering TORC2 function in vivo. Using this variant, we demonstrate a role for TORC2 in G2/M cell-cycle progression.
Collapse
Affiliation(s)
- Christl Gaubitz
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; Fondation ARC, 9 rue Guy Môquet, BP 90003, 04803 Villejuif Cedex, France
| | - Manoel Prouteau
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Georgia Konstantinidou
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Delphine Rispal
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Sandra Eltschinger
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Graham C Robinson
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Stéphane Thore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland; University of Bordeaux, European Institute for Chemistry and Biology, ARNA Laboratory, F-33607 Pessac, France; Institut National de la Santé Et de la Recherche Médicale, INSERM-U869, ARNA Laboratory, F-33000, Bordeaux, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| | - Robbie Loewith
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland; National Centre of Competence in Research "Chemical Biology," University of Geneva, Geneva CH-1211, Switzerland.
| |
Collapse
|
26
|
Abstract
About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.
Collapse
Affiliation(s)
- Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia;
| | | |
Collapse
|
27
|
Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun 2015; 6:6123. [PMID: 25609009 DOI: 10.1038/ncomms7123] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/15/2014] [Indexed: 01/26/2023] Open
Abstract
The chaperones Ump1 and Pba1-Pba2 promote efficient biogenesis of 20S proteasome core particles from its subunits via 15S intermediates containing alpha and beta subunits, except beta7. Here we elucidate the structural role of these chaperones in late steps of core particle biogenesis using biochemical, electron microscopy, cross-linking and mass spectrometry analyses. In 15S precursor complexes, Ump1 is largely unstructured, lining the inner cavity of the complex along the interface between alpha and beta subunits. The alpha and beta subunits form loosely packed rings with a wider alpha ring opening than in the 20S core particle, allowing for the Pba1-Pba2 heterodimer to be partially embedded in the central alpha ring cavity. During biogenesis, the heterodimer is expelled from the alpha ring by a restructuring event that organizes the beta ring and leads to tightening of the alpha ring opening. In this way, the Pba1-Pba2 chaperone is recycled for a new round of proteasome assembly.
Collapse
|
28
|
Klaholz BP. Structure Sorting of Multiple Macromolecular States in Heterogeneous Cryo-EM Samples by 3D Multivariate Statistical Analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojs.2015.57081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 2015; 40:49-57. [DOI: 10.1016/j.tibs.2014.10.005] [Citation(s) in RCA: 594] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
|
30
|
Sorzano COS, de la Rosa-Trevín JM, Tama F, Jonić S. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol. J Struct Biol 2014; 188:134-41. [PMID: 25268657 DOI: 10.1016/j.jsb.2014.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
Abstract
This article presents an integral graphical interface to the Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) approach that was developed for capturing continuous motions of large macromolecular complexes from single-particle EM images. HEMNMA was shown to be a good approach to analyze multiple conformations of a macromolecular complex but it could not be widely used in the EM field due to a lack of an integral interface. In particular, its use required switching among different software sources as well as selecting modes for image analysis was difficult without the graphical interface. The graphical interface was thus developed to simplify the practical use of HEMNMA. It is implemented in the open-source software package Xmipp 3.1 (http://xmipp.cnb.csic.es) and only a small part of it relies on MATLAB that is accessible through the main interface. Such integration provides the user with an easy way to perform the analysis of macromolecular dynamics and forms a direct connection to the single-particle reconstruction process. A step-by-step HEMNMA protocol with the graphical interface is given in full details in Supplementary material. The graphical interface will be useful to experimentalists who are interested in studies of continuous conformational changes of macromolecular complexes beyond the modeling of continuous heterogeneity in single particle reconstruction.
Collapse
Affiliation(s)
| | | | - Florence Tama
- RIKEN, Advanced Institute for Computational Sciences, Kobe, Hyogo 650-0047, Japan
| | - Slavica Jonić
- IMPMC, Sorbonne Universités - CNRS UMR 7590, UPMC Univ Paris 6, MNHN, IRD UMR 206, 75005 Paris, France.
| |
Collapse
|
31
|
Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 2014; 21:1500-8. [PMID: 24010709 PMCID: PMC3988990 DOI: 10.1016/j.str.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
Abstract
A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.
Collapse
Affiliation(s)
- Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
32
|
Jin Q, Sorzano C, de la Rosa-Trevín J, Bilbao-Castro J, Núñez-Ramírez R, Llorca O, Tama F, Jonić S. Iterative Elastic 3D-to-2D Alignment Method Using Normal Modes for Studying Structural Dynamics of Large Macromolecular Complexes. Structure 2014; 22:496-506. [DOI: 10.1016/j.str.2014.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/28/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
|
33
|
Cossio P, Hummer G. Bayesian analysis of individual electron microscopy images: towards structures of dynamic and heterogeneous biomolecular assemblies. J Struct Biol 2013; 184:427-37. [PMID: 24161733 DOI: 10.1016/j.jsb.2013.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
We develop a method to extract structural information from electron microscopy (EM) images of dynamic and heterogeneous molecular assemblies. To overcome the challenge of disorder in the imaged structures, we analyze each image individually, avoiding information loss through clustering or averaging. The Bayesian inference of EM (BioEM) method uses a likelihood-based probabilistic measure to quantify the consistency between each EM image and given structural models. The likelihood function accounts for uncertainties in the molecular position and orientation, variations in the relative intensities and noise in the experimental images. The BioEM formalism is physically intuitive and mathematically simple. We show that for experimental GroEL images, BioEM correctly identifies structures according to the functional state. The top-ranked structure is the corresponding X-ray crystal structure, followed by an EM structure generated previously from a superset of the EM images used here. To analyze EM images of highly flexible molecules, we propose an ensemble refinement procedure, and validate it with synthetic EM maps of the ESCRT-I-II supercomplex. Both the size of the ensemble and its structural members are identified correctly. BioEM offers an alternative to 3D-reconstruction methods, extracting accurate population distributions for highly flexible structures and their assemblies. We discuss limitations of the method, and possible applications beyond ensemble refinement, including the cross-validation and unbiased post-assessment of model structures, and the structural characterization of systems where traditional approaches fail. Overall, our results suggest that the BioEM framework can be used to analyze EM images of both ordered and disordered molecular systems.
Collapse
Affiliation(s)
- Pilar Cossio
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
34
|
Lyumkis D, Brilot AF, Theobald DL, Grigorieff N. Likelihood-based classification of cryo-EM images using FREALIGN. J Struct Biol 2013; 183:377-388. [PMID: 23872434 DOI: 10.1016/j.jsb.2013.07.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/03/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
We describe an implementation of maximum likelihood classification for single particle electron cryo-microscopy that is based on the FREALIGN software. Particle alignment parameters are determined by maximizing a joint likelihood that can include hierarchical priors, while classification is performed by expectation maximization of a marginal likelihood. We test the FREALIGN implementation using a simulated dataset containing computer-generated projection images of three different 70S ribosome structures, as well as a publicly available dataset of 70S ribosomes. The results show that the mixed strategy of the new FREALIGN algorithm yields performance on par with other maximum likelihood implementations, while remaining computationally efficient.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Axel F Brilot
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South Street, Waltham, MA 02454, USA
| | - Douglas L Theobald
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South Street, Waltham, MA 02454, USA
| | - Nikolaus Grigorieff
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South Street, Waltham, MA 02454, USA; Howard Hughes Medical Institute, Brandeis University, MS029, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
35
|
Abstract
Single particle electron microscopy is a versatile technique for the structural analysis of protein complexes in near-native conditions. While tremendous progress has been made during the past few decades in techniques for specimen preparation, imaging, and image analysis, the field is still in development. In the context of this volume on electron crystallography, the following chapter gives practical guidelines on how to begin single particle EM studies, including preparing specimens, selecting imaging conditions, and choosing which of the many approaches to image analysis are appropriate for a specific sample.
Collapse
Affiliation(s)
- Wilson C Y Lau
- Molecular Structure and Function Program, Departments of Biochemistry and Medical Biophysics, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
36
|
Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography. Ultramicroscopy 2013; 126:33-9. [DOI: 10.1016/j.ultramic.2012.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022]
|
37
|
Elmlund D, Elmlund H. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. J Struct Biol 2012; 180:420-7. [DOI: 10.1016/j.jsb.2012.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
38
|
Zhang J, Minary P, Levitt M. Multiscale natural moves refine macromolecules using single-particle electron microscopy projection images. Proc Natl Acad Sci U S A 2012; 109:9845-50. [PMID: 22665770 PMCID: PMC3382478 DOI: 10.1073/pnas.1205945109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The method presented here refines molecular conformations directly against projections of single particles measured by electron microscopy. By optimizing the orientation of the projection at the same time as the conformation, the method is well-suited to two-dimensional class averages from cryoelectron microscopy. Such direct use of two-dimensional images circumvents the need for a three-dimensional density map, which may be difficult to reconstruct from projections due to structural heterogeneity or preferred orientations of the sample on the grid. Our refinement protocol exploits Natural Move Monte Carlo to model a macromolecule as a small number of segments connected by flexible loops, on multiple scales. After tests on artificial data from lysozyme, we applied the method to the Methonococcus maripaludis chaperonin. We successfully refined its conformation from a closed-state initial model to an open-state final model using just one class-averaged projection. We also used Natural Moves to iteratively refine against heterogeneous projection images of Methonococcus maripaludis chaperonin in a mix of open and closed states. Our results suggest a general method for electron microscopy refinement specially suited to macromolecules with significant conformational flexibility. The algorithm is available in the program Methodologies for Optimization and Sampling In Computational Studies.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Building, Stanford, CA 94305
| | - Peter Minary
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Building, Stanford, CA 94305
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Building, Stanford, CA 94305
| |
Collapse
|
39
|
Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 2012; 149:113-23. [PMID: 22445172 PMCID: PMC3326522 DOI: 10.1016/j.cell.2012.02.047] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/24/2011] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
Abstract
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the “power stroke” that ejects substrate into the folding chamber.
Collapse
Affiliation(s)
- Daniel K Clare
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Orlova EV, Saibil HR. Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 2011; 111:7710-48. [PMID: 21919528 PMCID: PMC3239172 DOI: 10.1021/cr100353t] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 12/11/2022]
Affiliation(s)
- E. V. Orlova
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - H. R. Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
41
|
Scheres SHW. A Bayesian view on cryo-EM structure determination. J Mol Biol 2011; 415:406-18. [PMID: 22100448 PMCID: PMC3314964 DOI: 10.1016/j.jmb.2011.11.010] [Citation(s) in RCA: 619] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/27/2011] [Accepted: 11/03/2011] [Indexed: 11/02/2022]
Abstract
Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in particular near their resolution limit where noise levels are highest. Cryo-EM structures are typically filtered using ad hoc procedures to prevent overfitting, but the tuning of arbitrary parameters may lead to subjectivity in the results. I describe a Bayesian interpretation of cryo-EM structure determination, where smoothness in the reconstructed density is imposed through a Gaussian prior in the Fourier domain. The statistical framework dictates how data and prior knowledge should be combined, so that the optimal 3D linear filter is obtained without the need for arbitrariness and objective resolution estimates may be obtained. Application to experimental data indicates that the statistical approach yields more reliable structures than existing methods and is capable of detecting smaller classes in data sets that contain multiple different structures.
Collapse
Affiliation(s)
- Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
42
|
Abstract
The rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F₁F(o)-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H⁺-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A₁A(o)-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
Affiliation(s)
- Stephen P Muench
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks, LS2 9JT, UK
| | | | | |
Collapse
|
43
|
Kumar V, Butcher SJ, Öörni K, Engelhardt P, Heikkonen J, Kaski K, Ala-Korpela M, Kovanen PT. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One 2011; 6:e18841. [PMID: 21573056 PMCID: PMC3090388 DOI: 10.1371/journal.pone.0018841] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/21/2011] [Indexed: 11/20/2022] Open
Abstract
Background Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37°C). Methodology/Principal Findings To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6°C and 37°C resulted in reconstructions at ∼16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6°C than at 37°C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6°C, but not at 37°C. At 37°C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6°C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles. Conclusions/Significance Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.
Collapse
Affiliation(s)
- Vibhor Kumar
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
- Computational and Mathematical Biology, Genome Institute of Singapore, A*STAR, Singapore
| | - Sarah J. Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Kalliolinnantie 4, Helsinki, Finland
| | - Peter Engelhardt
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
- Department of Pathology, Haartman Institute, Haartmaninkatu 3, University of Helsinki, Helsinki, Finland
- Department of Applied Physics, Nanomicroscopy Center, School of Science and Technology, Puumiehenkuja 2, Aalto University, Espoo, Finland
| | - Jukka Heikkonen
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
- Department of Information Technology, University of Turku, Turku, Finland
| | - Kimmo Kaski
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
| | - Mika Ala-Korpela
- Computational Medicine Research Group, Institute of Clinical Medicine, Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Internal Medicine and Biocenter Oulu, Clinical Research Center, University of Oulu, Oulu, Finland
| | - Petri T. Kovanen
- Wihuri Research Institute, Kalliolinnantie 4, Helsinki, Finland
- * E-mail:
| |
Collapse
|
44
|
New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation. Micron 2011; 42:141-51. [DOI: 10.1016/j.micron.2010.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/21/2022]
|
45
|
Benesch JLP, Ruotolo BT, Simmons DA, Barrera NP, Morgner N, Wang L, Saibil HR, Robinson CV. Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy. J Struct Biol 2010; 172:161-8. [PMID: 20227505 DOI: 10.1016/j.jsb.2010.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Many multi-protein assemblies exhibit characteristics which hamper their structural and dynamical characterization. These impediments include low copy number, heterogeneity, polydispersity, hydrophobicity, and intrinsic disorder. It is becoming increasingly apparent that both novel and hybrid structural biology approaches need to be developed to tackle the most challenging targets. Nanoelectrospray mass spectrometry has matured over the last decade to enable the elucidation of connectivity and composition of large protein assemblies. Moreover, comparing mass spectrometry data with transmission electron microscopy images has enabled the mapping of subunits within topological models. Here we describe a preparative form of mass spectrometry designed to isolate specific protein complexes from within a heterogeneous ensemble, and to 'soft-land' these target complexes for ex situ imaging. By building a retractable probe incorporating a versatile target holder, and modifying the ion optics of a commercial mass spectrometer, we show that we can steer the macromolecular ion beam onto a target for imaging by means of transmission electron microscopy and atomic force microscopy. Our data for the tetradecameric chaperonin GroEL show that not only are the molecular volumes of the landed particles consistent with the overall dimensions of the complex, but also that their gross topological features can be maintained.
Collapse
Affiliation(s)
- Justin L P Benesch
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Single-particle electron microscopy of animal fatty acid synthase describing macromolecular rearrangements that enable catalysis. Methods Enzymol 2010. [PMID: 20888475 DOI: 10.1016/s0076-6879(10)83009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We have used macromolecular electron microscopy (EM) to characterize the conformational flexibility of the animal fatty acid synthase (FAS). Here we describe in detail methods employed for image collection and analysis. We also provide an account of how EM results were interpreted by considering a high-resolution static FAS X-ray structure and functional data to arrive at a molecular understanding of the way in which conformational pliability enables fatty acid synthesis.
Collapse
|
47
|
Elmlund D, Davis R, Elmlund H. Ab Initio Structure Determination from Electron Microscopic Images of Single Molecules Coexisting in Different Functional States. Structure 2010; 18:777-86. [DOI: 10.1016/j.str.2010.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/06/2010] [Accepted: 06/07/2010] [Indexed: 11/27/2022]
|
48
|
Clare DK, Orlova EV. 4.6A Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k x 4k CCD camera. J Struct Biol 2010; 171:303-8. [PMID: 20558300 PMCID: PMC2939825 DOI: 10.1016/j.jsb.2010.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/14/2010] [Accepted: 06/08/2010] [Indexed: 11/19/2022]
Abstract
Tobacco mosaic virus (TMV) is a plant virus with a highly ordered organisation and has been described in three different structural states: As stacked disks without RNA (X-ray crystallography), as a helical form with RNA (X-ray fibre diffraction) and as a second distinct helical form with RNA (cryo-EM). Here we present a structural analysis of TMV as a test object to assess the quality of cryo-EM images recorded at 300 keV on a CCD camera. The 4.6 Å TMV structure obtained is consistent with the previous cryo-EM structure and confirms that there is a second helical form of TMV. The structure here also shows that with a similar number of TMV segments an equivalent resolution can be achieved with a 4k CCD camera at 300 keV.
Collapse
|
49
|
Wendler P, Saibil HR. Cryo electron microscopy structures of Hsp100 proteins: crowbars in or out? Biochem Cell Biol 2010; 88:89-96. [PMID: 20130682 DOI: 10.1139/o09-164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Independent cryo electron microscopy (cryo-EM) studies of the closely related protein disaggregases ClpB and Hsp104 have resulted in two different models of subunit arrangement in the active hexamer. We compare the EM maps and resulting atomic structure fits, discuss their differences, and relate them to published experimental information in an attempt to discriminate between models. In addition, we present some general assessment criteria for low-resolution cryo-EM maps to offer non-structural biologists tools to evaluate these structures.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, Malet St., London WC1E 7HX, UK
| | | |
Collapse
|
50
|
Shatsky M, Hall RJ, Nogales E, Malik J, Brenner SE. Automated multi-model reconstruction from single-particle electron microscopy data. J Struct Biol 2010; 170:98-108. [PMID: 20085819 DOI: 10.1016/j.jsb.2010.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 10/20/2022]
Abstract
Biological macromolecules can adopt multiple conformational and compositional states due to structural flexibility and alternative subunit assemblies. This structural heterogeneity poses a major challenge in the study of macromolecular structure using single-particle electron microscopy. We propose a fully automated, unsupervised method for the three-dimensional reconstruction of multiple structural models from heterogeneous data. As a starting reference, our method employs an initial structure that does not account for any heterogeneity. Then, a multi-stage clustering is used to create multiple models representative of the heterogeneity within the sample. The multi-stage clustering combines an existing approach based on Multivariate Statistical Analysis to perform clustering within individual Euler angles, and a newly developed approach to sort out class averages from individual Euler angles into homogeneous groups. Structural models are computed from individual clusters. The whole data classification is further refined using an iterative multi-model projection-matching approach. We tested our method on one synthetic and three distinct experimental datasets. The tests include the cases where a macromolecular complex exhibits structural flexibility and cases where a molecule is found in ligand-bound and unbound states. We propose the use of our approach as an efficient way to reconstruct distinct multiple models from heterogeneous data.
Collapse
Affiliation(s)
- Maxim Shatsky
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|