1
|
Nix Z, Kota D, Ratnayake I, Wang C, Smith S, Wood S. Spectral characterization of cell surface motion for mechanistic investigations of cellular mechanobiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:3-15. [PMID: 36108781 DOI: 10.1016/j.pbiomolbio.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Understanding the specific mechanisms responsible for anabolic and catabolic responses to static or dynamic force are largely poorly understood. Because of this, most research groups studying mechanotransduction due to dynamic forces employ an empirical approach in deciding what frequencies to apply during experiments. While this has been shown to elucidate valuable information regarding how cells respond under controlled provocation, it is often difficult or impossible to determine a true optimal frequency for force application, as many intracellular complexes are involved in receiving, propagating, and responding to a given stimulus. Here we present a novel adaptation of an analytical technique from the fields of civil and mechanical engineering that may open the door to direct measurement of mechanobiological cellular frequencies which could be used to target specific cell signaling pathways leveraging synergy between outside-in and inside-out mechanotransduction approaches. This information could be useful in identifying how specific proteins are involved in the homeostatic balance, or disruption thereof, of cells and tissue, furthering the understanding of the pathogenesis and progression of many diseases across a wide variety of cell types, which may one day lead to the development of novel mechanobiological therapies for clinical use.
Collapse
Affiliation(s)
- Zachary Nix
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Divya Kota
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Ishara Ratnayake
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Congzhou Wang
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Steve Smith
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Scott Wood
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA.
| |
Collapse
|
2
|
Mallah AH, Amr M, Gozen A, Mendenhall J, Van-Wie BJ, Abu-Lail NI. Interleukin 1β and lipopolysaccharides induction dictate chondrocyte morphological properties and reduce cellular roughness and adhesion energy comparatively. Biointerphases 2022; 17:051001. [PMID: 36180273 PMCID: PMC9526521 DOI: 10.1116/6.0001986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 10/02/2023] Open
Abstract
Osteoarthritis (OA) is a whole joint disease marked by the degradation of the articular cartilage (AC) tissue, chronic inflammation, and bone remodeling. Upon AC's injury, proinflammatory mediators including interleukin 1β (IL1β) and lipopolysaccharides (LPS) play major roles in the onset and progression of OA. The objective of this study was to mechanistically detect and compare the effects of IL1β and LPS, separately, on the morphological and nanomechanical properties of bovine chondrocytes. Cells were seeded overnight in a full serum medium and the next day divided into three main groups: A negative control (NC) of a reduced serum medium and 10 ng/ml IL1ß or 10 ng/ml LPS-modified media. Cells were induced for 24 h. Nanomechanical properties (elastic modulus and adhesion energy) and roughness were quantified using atomic force microscopy. Nitric oxide, prostaglandin 2 (PGE2), and matrix metalloproteinases 3 (MMP3) contents; viability of cells; and extracellular matrix components were quantified. Our data revealed that viability of the cells was not affected by inflammatory induction and IL1ß induction increased PGE2. Elastic moduli of cells were similar among IL1β and NC while LPS significantly decreased the elasticity compared to NC. IL1ß induction resulted in least cellular roughness while LPS induction resulted in least adhesion energy compared to NC. Our images suggest that IL1ß and LPS inflammation affect cellular morphology with cytoskeleton rearrangements and the presence of stress fibers. Finally, our results suggest that the two investigated inflammatory mediators modulated chondrocytes' immediate responses to inflammation in variable ways.
Collapse
Affiliation(s)
- Alia H. Mallah
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249
| | - Mahmoud Amr
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249
| | - Arda Gozen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
| | - Juana Mendenhall
- Department of Chemistry, Morehouse College, Atlanta, Georgia 30314
| | - Bernard J. Van-Wie
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164
| | - Nehal I. Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249
| |
Collapse
|
3
|
García García CE, Verdier C, Lardy B, Bossard F, Soltero Martínez JFA, Rinaudo M. Chondrocyte cell adhesion on chitosan supports using single-cell atomic force microscopy. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.2008135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Enrique García García
- Departamento de Ingeniería Química, Universidad de Guadalajara, Guadalajara, Mexico
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Grenoble Institute of Engineering), LRP, Grenoble, France
| | | | - Bernard Lardy
- Pôle Biologie, DBTP, Biochimie des Enzymes et des Protéines, CHU-Grenoble, Grenoble, France
| | - Frédéric Bossard
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Grenoble Institute of Engineering), LRP, Grenoble, France
| | | | | |
Collapse
|
4
|
Usukura E, Narita A, Yagi A, Ito S, Usukura J. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy. Sci Rep 2016; 6:27472. [PMID: 27273367 PMCID: PMC4895337 DOI: 10.1038/srep27472] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/19/2016] [Indexed: 11/09/2022] Open
Abstract
An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5-6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology.
Collapse
Affiliation(s)
- Eiji Usukura
- Structural Biology Research Centre, Graduate School of Science, Nagoya University, Nagoya, 464-8603 Japan
| | - Akihiro Narita
- Structural Biology Research Centre, Graduate School of Science, Nagoya University, Nagoya, 464-8603 Japan
| | - Akira Yagi
- Olympus Corporation, Hachioji, Tokyo, 192-8512 Japan
| | - Shuichi Ito
- Olympus Corporation, Hachioji, Tokyo, 192-8512 Japan
| | - Jiro Usukura
- Structural Biology Research Centre, Graduate School of Science, Nagoya University, Nagoya, 464-8603 Japan
| |
Collapse
|
5
|
Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 2015; 10:e0119816. [PMID: 25822615 PMCID: PMC4379081 DOI: 10.1371/journal.pone.0119816] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Chondrocytes reorganize the extracellular matrix of articular cartilage in response to externally applied loads. Thereby, different loading characteristics lead to different biological responses. Despite of active research in this area, it is still unclear which parts of the extracellular matrix adapt in what ways, and how specific loading characteristics affect matrix changes. This review focuses on the influence of cyclic tensile strain on chondrocyte metabolism in vitro. It also aimed to identify anabolic or catabolic chondrocyte responses to different loading protocols. The key findings show that loading cells up to 3% strain, 0.17 Hz, and 2 h, resulted in weak or no biological responses. Loading between 3–10% strain, 0.17–0.5 Hz, and 2–12 h led to anabolic responses; and above 10% strain, 0.5 Hz, and 12 h catabolic events predominated. However, this review also discusses that various other factors are involved in the remodeling of the extracellular matrix in response to loading, and that parameters like an inflammatory environment might influence the biological response.
Collapse
Affiliation(s)
- Judith Bleuel
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- * E-mail:
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
6
|
Bai H, Jin H, Yang F, Zhu H, Cai J. Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species. SCANNING 2014; 36:622-631. [PMID: 25327419 DOI: 10.1002/sca.21170] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/11/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Apigenin is a flavonoid, which has been proved to possess effective anti-cancer bioactivities against variety of cell lines. However, little is known about its effect on the cell-surface and the interaction between cell-surface and the reacting drug. In this study, human breast cancer line (MCF-7) was selected to be as a cell model to investigate the effects of apigenin on cell growth, proliferation, apoptosis, cellular morphology, etc. MTT assay showed that the growth inhibition induced by apigenin was in a dose-dependent manner when treated with different concentrations of apigenin while had little cytotoxic effects on human normal cells (MCF-10A). Fluorescence-based flow cytometry was used to detect cellular apoptosis and ROS production. The results showed that 80 µM apigenin could effectively induce apoptosis and overproduction of ROS in MCF-7 cells. Here, atomic force microscopy (AFM) was utilized to detect the shapes and membrane structures of MCF-7 cells at cellular or subcellular level. The results showed that the control MCF-7 cells presented typical elongated-spindle shapes with abundant pseudopodia, while after treated with apigenin, the cells shrunk and became round, the pseudopodia diminished. Moreover, the images of ultrastructure indicated that the cell membrane was composed of nanoparticles of 49 nm, but with the treated concentrations of apigenin increasing, the sizes of membrane particles significantly increased to 400 nm. These results can improve our understanding of apigenin, which can be potentially developed as a new agent for treatment of cancers.
Collapse
Affiliation(s)
- Haihua Bai
- Department of Chemistry and Institute for Nano-Chemistry, Jinan University, Guangzhou, China
| | | | | | | | | |
Collapse
|
7
|
Quan X, Guo K, Wang Y, Huang L, Chen B, Ye Z, Luo Z. Mechanical compression insults induce nanoscale changes of membrane-skeleton arrangement which could cause apoptosis and necrosis in dorsal root ganglion neurons. Biosci Biotechnol Biochem 2014; 78:1631-9. [PMID: 25126715 PMCID: PMC4205929 DOI: 10.1080/09168451.2014.932664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.
Collapse
Affiliation(s)
- Xin Quan
- a Department of Orthopedics , Xijing Hospital, The Fourth Military Medical University , Xi'an , The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Vahabi S, Nazemi Salman B, Javanmard A. Atomic force microscopy application in biological research: a review study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2013; 38:76-83. [PMID: 23825885 PMCID: PMC3700051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/02/2012] [Accepted: 06/10/2012] [Indexed: 11/15/2022]
Abstract
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.
Collapse
Affiliation(s)
- Surena Vahabi
- Department of Periodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Nazemi Salman
- Department of Pedodontics, Dental School, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
9
|
Usukura J, Yoshimura A, Minakata S, Youn D, Ahn J, Cho SJ. Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions. JOURNAL OF ELECTRON MICROSCOPY 2012; 61:321-326. [PMID: 22872282 DOI: 10.1093/jmicro/dfs055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) combined with unroofing techniques enabled clear imaging of the intracellular cytoskeleton and the cytoplasmic surface of the cell membrane under aqueous condition. Many actin filaments were found to form a complex meshwork on the cytoplasmic surface of the membrane, as observed in freeze-etching electron microscopy. Characteristic periodic striations of about 5 nm formed by the assembly of G-actin were detected along actin filaments at higher magnification. Actin filaments aggregated and dispersed at several points, thereby dividing the cytoplasmic surface of the membrane into several large domains. Microtubules were also easily detected and were often tethered to the membrane surface by fine filaments. Furthermore, clathrin coats on the membrane were clearly visualized for the first time in water by AFM. Although the resolution of these images is lower than electron micrographs of freeze-etched samples processed similarly, the measurement capabilities of the AFM in a more biologically relevant conditions demonstrate that it is an important tool for imaging intracellular structures and cell surfaces in the native, aqueous state.
Collapse
Affiliation(s)
- Jiro Usukura
- EcoTopia Science Institute, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Huang C, Jin H, Song B, Zhu X, Zhao H, Cai J, Lu Y, Chen B, Lin Y. The cytotoxicity and anticancer mechanisms of alterporriol L, a marine bianthraquinone, against MCF-7 human breast cancer cells. Appl Microbiol Biotechnol 2011; 93:777-85. [PMID: 21779847 DOI: 10.1007/s00253-011-3463-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 12/16/2022]
|
11
|
Jin H, Zhong X, Wang Z, Huang X, Ye H, Ma S, Chen Y, Cai J. Sonodynamic effects of hematoporphyrin monomethyl ether on CNE-2 cells detected by atomic force microscopy. J Cell Biochem 2011; 112:169-78. [PMID: 21053362 DOI: 10.1002/jcb.22912] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematoporphyrin monomethyl ether (HMME) has been effectively used to treat solid tumors of some types. However, its application in nasopharyngeal carcinoma has not been studied yet. In this paper, the detailed sonodynamic effects of HMME-SDT (sonodynamic therapy) on CNE-2 cells including cell growth inhibition, apoptosis induction, and membrane toxicity were investigated. It was found that HMME alone had less cytotoxicity whereas HMME-SDT could suppress the cell proliferation in a dose-dependent manner as detected by MTT assay. The annexin V-based flow cytometric data indicated that upon SDT, different concentrations of HMME induce distinct types of cell death, apoptosis by low concentration (60 µg/ml) of HMME and necrosis by higher concentration (120 µg/ml). The immunofluorescence of cytoskeleton and nuclei morphology showed that upon HMME-SDT, the cells became rounding and the cytoskeletal network disappeared, and, the nuclei represented a total fragmented morphology of nuclear bodies. These alternations showed the apoptosis induction by HMME-SDT. Further AFM study showed that the cell membrane structure and cytoskeleton networks were destroyed, and, the Young's modulus, tip-cell-surface adhesion force decreased to 0.22 ± 0.11 Mpa, 35.4 ± 12.8 pN of cells with 120 µg/ml HMME-SDT from 0.48 ± 0.21 Mpa, 69.6 ± 22.3 pN of native cells, respectively. These membrane changes caused the collapse of mitochondrial transmembrane potential and disturbance of intracellular calcium homeostasis, which was consistent with the results detected by flow cytometry. Therefore, membrane toxicity and cytoskeleton disrupture induced by HMME-SDT maybe important factors to induce cell apoptosis, and, the disturbance of mitochondrial transmembrane potential and calcium channels might be the apoptosis mechanisms.
Collapse
Affiliation(s)
- Hua Jin
- Department of Chemistry and Institute for Nano-Chemistry, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang M, Ruan Y, Chen Q, Li S, Wang Q, Cai J. Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca(2+) concentration. Eur J Pharmacol 2010; 650:41-7. [PMID: 20883687 DOI: 10.1016/j.ejphar.2010.09.049] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/28/2010] [Accepted: 09/07/2010] [Indexed: 02/06/2023]
Abstract
Curcumin is a phytochemicals which is able to inhibit carcinogenesis in a variety of cell lines. However little is known about its effect on the cell-surface and the interaction between cell-surface and the reacting drug. In this study, we found that curcumin could inhibit the growth of human hepatocellular carcinoma cell line (HepG2), change the cell-surface morphology and trigger the pro-apoptotic factor to promote cell apoptosis. Cell counting kit results indicated that the cell viability had a dose-dependent relationship with the curcumin concentration in 24h. The 50% inhibiting concentration (IC50) was 17.5±3.2μM. It was clear that curcumin could lead to apoptosis, and the apoptosis increased as the reacting concentration goes up. Moreover, curcumin could also affect the disruption of mitochondrial membrane potential and the disturbance of intracellular free Ca(2+) concentration. All these alterations changed the cell morphology and cell-surface ultrastructure with atomic force microscopy (AFM) detecting at nanoscale level. AFM results indicated that cells in control group clearly revealed a typical long spindle-shaped morphology. Cell tails was wide and unrolled. The ultrastructure showed that cell membrane was made up of many nanoparticles. After being treated with curcumin, cell tail was narrowed. The size of membrane nanoparticles became small. These results can improve our understanding of curcumin which can be potentially developed as a new agent for treatment of hepatocellular carcinoma since it has been reported to have a low cytotoxic effect on healthy cell. AFM can be used as a powerful tool for detecting ultrastructures.
Collapse
Affiliation(s)
- Mu Wang
- Department of Chemistry, Jinan University, 601 Huangpu Road West, Tianhe District, Guangzhou, 510632, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Morphological observation and adhesive property measurement on human ovary carcinoma cells by atomic force microscopy. ACTA ACUST UNITED AC 2009. [DOI: 10.1116/1.3066057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|