1
|
Miyamoto Y, Nakatsuji M, Yoshida T, Ohkubo T, Inui T. Structural and interaction analysis of human lipocalin-type prostaglandin D synthase with the poorly water-soluble drug NBQX. FEBS J 2023; 290:3983-3996. [PMID: 37021622 DOI: 10.1111/febs.16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a secretory lipid-transporter protein that was shown to bind a wide variety of hydrophobic ligands in vitro. Exploiting this function, we previously examined the feasibility of using L-PGDS as a novel delivery vehicle for poorly water-soluble drugs. However, the mechanism by which human L-PGDS binds to poorly water-soluble drugs is unclear. In this study, we determined the solution structure of human L-PGDS and investigated the mechanism of L-PGDS binding to 6-nitro-7-sulfamoyl-benzo[f]quinoxalin-2,3-dione (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor antagonist. NMR experiments showed that human L-PGDS has an eight-stranded antiparallel β-barrel structure that forms a central cavity, a short 310 -helix and two α-helices. Titration with NBQX was monitored using 1 H-15 N HSQC spectroscopy. At higher NBQX concentrations, some cross-peaks of the protein exhibited fast-exchanging shifts with a curvature, indicating at least two binding sites. These residues were located in the upper portion of the cavity. Singular value decomposition analysis revealed that human L-PGDS has two NBQX binding sites. Large chemical shift changes were observed in the H2-helix and A-, B-, C-, D-, H- and I-strands and H2-helix upon NBQX binding. Calorimetric experiments revealed that human L-PGDS binds two NBQX molecules with dissociation constants of 46.7 μm for primary binding and 185.0 μm for secondary binding. Molecular docking simulations indicated that these NBQX binding sites are located within the β-barrel. These results provide new insights into the interaction between poorly water-soluble drugs and human L-PGDS as a drug carrier.
Collapse
Affiliation(s)
- Yuya Miyamoto
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Masatoshi Nakatsuji
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tadayasu Ohkubo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
2
|
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm 2023; 637:122886. [PMID: 36966982 DOI: 10.1016/j.ijpharm.2023.122886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
DNA topoisomerase I plays a key role in lubricatingthe wheels of DNA replication or RNA transcription through breaking and reconnecting DNA single-strand. It is widely known that camptothecin and its derivatives (CPTs) have inhibitory effects on topoisomerases I, and have obtained some clinical benefits in cancer treatment. The potent cytotoxicity makes 7-ethyl-10-hydroxycamptothecin (SN-38) become a brilliant star among these derivatives. However, some undesirable physical and chemical properties of this compound, including poor solubility and stability, seriously hinder its effective delivery to tumor sites. In recent years, strategies to alleviate these defects have aroused extensive research interest. By focusing on the loading mechanism, basic nanodrug delivery systems with SN-38 loaded, like nanoparticles, liposomes and micelles, are demonstrated here. Additionally, functionalized nanodrug delivery systems of SN-38 including prodrug and active targeted nanodrug delivery systems and delivery systems designed to overcome drug resistance are also reviewed. At last, challenges for future research in formulation development and clinical translation of SN-38 drug delivery system are discussed.
Collapse
|
3
|
Shimamoto S, Nakahata Y, Hidaka Y, Yoshida T, Ohkubo T. NMR resonance assignments of mouse lipocalin-type prostaglandin D synthase/prostaglandin J 2 complex. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:225-229. [PMID: 35445291 DOI: 10.1007/s12104-022-10084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH2 to produce PGD2, an endogenous somenogen, in the brains of various mammalians. We recently reported that various other PGs also bind to L-PGDS, suggesting that it could serve as an extracellular carrier for PGs. Although the solution and crystal structure of L-PGDS has been determined, as has the structure of L-PGDS complexed PGH2 analog, a structural analysis of L-PGDS complexed with other PGs is needed in order to understand the mechanism responsible for the PG trapping. Here, we report the nearly complete 1H, 13C, and 15N backbone and side chain resonance assignments of the L-PGDS/PGJ2 complex and the binding site for PGJ2 on L-PGDS.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 3-4-1 Kowakae, Osaka, 577-8502, Japan.
| | - Yuta Nakahata
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 3-4-1 Kowakae, Osaka, 577-8502, Japan
| | - Yuji Hidaka
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 3-4-1 Kowakae, Osaka, 577-8502, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Small angle X-ray scattering analysis of ligand-bound forms of tetrameric apolipoprotein-D. Biosci Rep 2021; 41:227100. [PMID: 33399852 PMCID: PMC7786332 DOI: 10.1042/bsr20201423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein-D (apoD) is a glycosylated lipocalin that plays a protective role in Alzheimer's disease due to its antioxidant function. Native apoD from human body fluids forms oligomers, predominantly a stable tetramer. As a lipocalin, apoD binds and transports small hydrophobic molecules such as progesterone, palmitic acid and sphingomyelin. Oligomerisation is a common trait in the lipocalin family and is affected by ligand binding in other lipocalins. The crystal structure of monomeric apoD shows no major changes upon progesterone binding. Here, we used small-angle X-ray scattering (SAXS) to investigate the influence of ligand binding and oxidation on apoD oligomerisation and conformation. As a solution-based technique, SAXS is well suited to detect changes in oligomeric state and conformation in response to ligand binding. Our results show no change in oligomeric state of apoD and no major conformational changes or subunit rearrangements in response to binding of ligands or protein oxidation. This highlights the highly stable structure of the native apoD tetramer under various physiologically relevant experimental conditions.
Collapse
|
6
|
Wen D, Li X, Geng X, Hirai M, Ajito S, Takahashi K, Ozaki M, Hojo MK, Uebi T, Iwasa T. Characterization of Localization, Ligand Binding, and pH-Dependent Conformational Changes of Two Chemosensory Proteins Expressed in the Antennae of the Japanese Carpenter Ant, Camponotus Japonicus. Zoolog Sci 2020; 37:371-381. [PMID: 32729716 DOI: 10.2108/zs190138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/12/2020] [Indexed: 11/17/2022]
Abstract
Camponotus japonicus uses basiconic antennal sensilla (s. basiconica) to sense a colony-specific blend of species-specific cuticular hydrocarbons (CHCs). The inner portion of the s. basiconica is filled with sensillar lymph and chemosensory proteins (CSPs) presumed to transport CHCs to olfactory neuron receptors. Although 12 CSPs have been found in C. japonicus antennae, we focused on CjapCSP1 and CjapCSP13. The molecular basis of CSP1 function was explored by observation of its structure in solution at pH 4.0 and 7.0 through circular dichroism (CD) and X-ray solution scattering. Although the secondary structure did not vary with pH change, the radius of gyration (Rg) was larger by 5.3% (0.74 Å increase) at pH 4.0 than at pH 7.0. The dissociation constant (Kd) for CjapCSP1 measured with a fluorescent probe, 1-N-phenylnaphthylamine, was larger at pH 4.0 than at pH 7.0, suggesting that acidic pH triggers ligand dissociation. In contrast to CjapCSP1, the Rg of CjapCSP13 was slightly smaller at pH 4.0 than at pH 7.0. Western blotting and immunohistochemistry with protein-specific antisera revealed that both CjapCSP1 and CjapCSP13 are detected in the antennae, but differ in their specific internal localization. Binding to four compounds, including the ant CHC (z)-9-tricosene, was examined. Although both CjapCSP1 and CjapCSP13 bound to (z)-9-tricosene, CjapCSP13 bound with higher affinity than CjapCSP1 and showed different binding properties. CjapCSP1 and CjapCSP13 are synthesized by the same cells of the antenna, but function differently in CHC distribution due to differences in their localization and binding characteristics.
Collapse
Affiliation(s)
- Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Xing Li
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Mitsuhiro Hirai
- Graduate School of Science and Technology, Gunma University, Maebashi 371-8510, Japan
| | - Satoshi Ajito
- Graduate School of Science and Technology, Gunma University, Maebashi 371-8510, Japan
| | - Kosuke Takahashi
- Graduate School of Science and Technology, Gunma University, Maebashi 371-8510, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Masaru K Hojo
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tatsuya Uebi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan.,Academic Support Center, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan,
| |
Collapse
|
7
|
Amyloid β chaperone - lipocalin-type prostaglandin D synthase acts as a peroxidase in the presence of heme. Biochem J 2020; 477:1227-1240. [PMID: 32271881 PMCID: PMC7148433 DOI: 10.1042/bcj20190536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/01/2022]
Abstract
The extracellular transporter, lipocalin-type prostaglandin D synthase (L-PGDS) binds to heme and heme metabolites with high affinity. It has been reported that L-PGDS protects neuronal cells against apoptosis induced by exposure to hydrogen peroxide. Our study demonstrates that when human WT L-PGDS is in complex with heme, it exhibits a strong peroxidase activity thus behaving as a pseudo-peroxidase. Electron paramagnetic resonance studies confirm that heme in the L-PGDS–heme complex is hexacoordinated with high-spin Fe(III). NMR titration of heme in L-PGDS points to hydrophobic interaction between heme and several residues within the β-barrel cavity of L-PGDS. In addition to the transporter function, L-PGDS is a key amyloid β chaperone in human cerebrospinal fluid. The presence of high levels of bilirubin and its derivatives, implicated in Alzheimer's disease, by binding to L-PGDS may reduce its chaperone activity. Nevertheless, our ThT binding assay establishes that heme and heme metabolites do not significantly alter the neuroprotective chaperone function of L-PGDS. Guided by NMR data we reconstructed the heme L-PGDS complex using extensive molecular dynamics simulations providing a platform for mechanistic interpretation of the catalytic and transporting functions and their modulation by secondary ligands like Aβ peptides and heme metabolites.
Collapse
|
8
|
Teraoka Y, Kume S, Lin Y, Atsuji S, Inui T. Comprehensive Evaluation of the Binding of Lipocalin-Type Prostaglandin D Synthase to Poorly Water-Soluble Drugs. Mol Pharm 2017; 14:3558-3567. [PMID: 28829147 DOI: 10.1021/acs.molpharmaceut.7b00590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low water solubility of candidate drug compounds is a major problem in pharmaceutical research and development. We developed a novel drug delivery system (DDS) for poorly water-soluble drugs using lipocalin-type prostaglandin D synthase (L-PGDS), which belongs to the lipocalin superfamily and binds a large variety of hydrophobic molecules. In this study, we comprehensively evaluated the capability of L-PGDS to bind and solubilize various poorly water-soluble drugs using structure-based docking. Docking simulations of 2892 commercially available approved drugs indicated that L-PGDS shows higher binding affinities for various drugs compared with 2-hydroxypropyl-β-cyclodextrin. Five drugs selected from the top 100 with the highest binding affinities for L-PGDS exhibited very low solubility in PBS (pH 7.4). However, in the presence of 1 mM L-PGDS, the apparent solubility of all drugs improved markedly, from 19.5- to 166-fold. Calorimetric experiments on two drugs, telmisartan and imatinib, revealed that L-PGDS forms a 1:2 complex with each drug, with dissociation constants of 0.4-40.0 μM. Kinetic simulations of drug dissolution with L-PGDS indicated that the difference in free energy change (ΔΔG) between the insoluble state and the L-PGDS-bound state are within the range from -10 to +5 kJ mol-1. The ΔΔG value is a critical factor in evaluating whether a poorly water-soluble drug can be solubilized by L-PGDS. Collectively, these results demonstrate that in silico docking is a promising approach for identifying drug molecules suitable for the L-PGDS-based DDS.
Collapse
Affiliation(s)
- Yoshiaki Teraoka
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Research Fellow of the Japan Society for the Promotion of Science , 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Satoshi Kume
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies , 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Health Metrics Development Team, Integrated Research Group, RIKEN Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub , 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuxi Lin
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies , 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shogo Atsuji
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Gouveia Z, Carlos AR, Yuan X, Aires-da-Silva F, Stocker R, Maghzal GJ, Leal SS, Gomes CM, Todorovic S, Iranzo O, Ramos S, Santos AC, Hamza I, Gonçalves J, Soares MP. Characterization of plasma labile heme in hemolytic conditions. FEBS J 2017; 284:3278-3301. [PMID: 28783254 PMCID: PMC5978748 DOI: 10.1111/febs.14192] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 01/29/2023]
Abstract
Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro‐oxidant manner and regulates cellular metabolism while exerting pro‐inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme‐specific single domain antibodies (sdAbs) that together with a cellular‐based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7m and that 2–8% (~ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme‐binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7m. The heme‐specific sdAbs neutralize the pro‐oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme‐specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme‐specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme.
Collapse
Affiliation(s)
| | - Ana R Carlos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Frederico Aires-da-Silva
- Technophage S.A., Lisboa, Portugal.,CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Iranzo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Ramos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Ana C Santos
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - João Gonçalves
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
10
|
Mizoguchi M, Nakatsuji M, Takano J, Ishibashi O, Wada K, Inui T. Development of pH-Independent Drug Release Formulation Using Lipocalin-Type Prostaglandin D Synthase. J Pharm Sci 2016; 105:2735-2742. [PMID: 26886322 DOI: 10.1016/s0022-3549(15)00176-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/23/2015] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to develop a pH-independent drug release formulation using lipocalin-type prostaglandin D synthase, a member of the lipocalin superfamily, with the function of forming complexes together with various small lipophilic molecules. Dipyridamole, a poorly water-soluble drug, showing a pH-dependent solubility profile, was used as the model drug. The solubilization of dipyridamole was achieved by a simple complex formulation method with lipocalin-type prostaglandin D synthase. The complex formulation was produced successfully by spray drying, and the obtained powder formulation showed complete dissolution in fasted-state simulated gastric fluid (pH, 1.6) and phosphate-buffered solution (pH, 6.8). In addition, the potential stability of the complex formulation was assessed, and the dissolution profile of the produced powder at pH 6.8 was maintained after 4-week storage under several storage conditions. Furthermore, a pharmacokinetic study using hypochlorhydria model rats was performed to verify the improvement of the intestinal absorption behavior, and eventually the complex formulation overcame the problematic absorption profile of dipyridamole in the elevated gastric pH conditions. These results, taken together, demonstrate that the use of this well-designed drug-delivery carrier is feasible for the development of pH-independent drug release formulations.
Collapse
Affiliation(s)
- Masashi Mizoguchi
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; Department of Chemistry, Manufacturing and Control, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd., Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masatoshi Nakatsuji
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Junichi Takano
- Department of Chemistry, Manufacturing and Control, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd., Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Ishibashi
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Koichi Wada
- Department of Chemistry, Manufacturing and Control, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd., Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
11
|
Nakatsuji M, Inoue H, Kohno M, Saito M, Tsuge S, Shimizu S, Ishida A, Ishibashi O, Inui T. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38. PLoS One 2015; 10:e0142206. [PMID: 26529243 PMCID: PMC4631600 DOI: 10.1371/journal.pone.0142206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023] Open
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Haruka Inoue
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Masaki Kohno
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mayu Saito
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Syogo Tsuge
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shota Shimizu
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsuko Ishida
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Osamu Ishibashi
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- * E-mail:
| |
Collapse
|
12
|
Mizoguchi M, Nakatsuji M, Inoue H, Yamaguchi K, Sakamoto A, Wada K, Inui T. Novel oral formulation approach for poorly water-soluble drug using lipocalin-type prostaglandin D synthase. Eur J Pharm Sci 2015; 74:77-85. [DOI: 10.1016/j.ejps.2015.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/24/2022]
|
13
|
Inui T, Mase M, Shirota R, Nagashima M, Okada T, Urade Y. Lipocalin-type prostaglandin D synthase scavenges biliverdin in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2014; 34:1558-67. [PMID: 25005874 PMCID: PMC4158676 DOI: 10.1038/jcbfm.2014.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 01/06/2023]
Abstract
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is the second major protein in human cerebrospinal fluid (CSF) and belongs to the lipocalin superfamily composed of various secretory lipophilic ligand transporter proteins. However, the endogenous ligand of L-PGDS has not yet been elucidated. In this study, we purified L-PGDS from the CSF of aneurysmal subarachnoid hemorrhage (SAH) patients. Lipocalin-type PG D synthase showed absorbance spectra with major peaks at 280 and 392 nm and a minor peak at around 660 nm. The absorbance at 392 nm of L-PGDS increased from 1 to 9 days and almost disappeared at 2 months after SAH, whereas the L-PGDS activity decreased from 1 to 7 days and recovered to normal at 2 months after SAH. These results indicate that some chromophore had accumulated in the CSF after SAH and bound to L-PGDS, thus inactivating it. Matrix assisted laser desorption ionization time-of-flight mass spectrometry of L-PGDS after digestion of it with endoproteinase Lys-C revealed that L-PGDS had covalently bound biliverdin, a by-product of heme breakdown. These results suggest that L-PGDS acted as a scavenger of biliverdin, which is a molecule not found in normal CSF. This is the first report of identification of a pathophysiologically important endogenous ligand for this lipocalin superfamily protein in humans.
Collapse
Affiliation(s)
- Takashi Inui
- 1] Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan [2] Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery and Restorative Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ryoko Shirota
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mariko Nagashima
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Tetsuya Okada
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan
| |
Collapse
|
14
|
Sterckx YGJ, Volkov AN. Cofactor-Dependent Structural and Binding Properties of Yeast Cytochrome c Peroxidase. Biochemistry 2014; 53:4526-36. [DOI: 10.1021/bi500603w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yann G. J. Sterckx
- Research
Unit for Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural
Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- Structural
Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Jean
Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
15
|
Bovine α1-acid glycoprotein, a thermostable version of its human counterpart: Insights from Fourier transform infrared spectroscopy and in silico modelling. Biochimie 2014; 102:19-28. [DOI: 10.1016/j.biochi.2014.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|
16
|
Sterckx YGJ, Volkov AN, Vranken WF, Kragelj J, Jensen MR, Buts L, Garcia-Pino A, Jové T, Van Melderen L, Blackledge M, van Nuland NAJ, Loris R. Small-angle X-ray scattering- and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2. Structure 2014; 22:854-65. [PMID: 24768114 DOI: 10.1016/j.str.2014.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
Abstract
Antitoxins from prokaryotic type II toxin-antitoxin modules are characterized by a high degree of intrinsic disorder. The description of such highly flexible proteins is challenging because they cannot be represented by a single structure. Here, we present a combination of SAXS and NMR data to describe the conformational ensemble of the PaaA2 antitoxin from the human pathogen E. coli O157. The method encompasses the use of SAXS data to filter ensembles out of a pool of conformers generated by a custom NMR structure calculation protocol and the subsequent refinement by a block jackknife procedure. The final ensemble obtained through the method is validated by an established residual dipolar coupling analysis. We show that the conformational ensemble of PaaA2 is highly compact and that the protein exists in solution as two preformed helices, connected by a flexible linker, that probably act as molecular recognition elements for toxin inhibition.
Collapse
Affiliation(s)
- Yann G J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim F Vranken
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jaka Kragelj
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Lieven Buts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Thomas Jové
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Martin Blackledge
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Nico A J van Nuland
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
17
|
Binda C, Génier S, Cartier A, Larrivée JF, Stankova J, Young JC, Parent JL. A G protein-coupled receptor and the intracellular synthase of its agonist functionally cooperate. ACTA ACUST UNITED AC 2014; 204:377-93. [PMID: 24493589 PMCID: PMC3912537 DOI: 10.1083/jcb.201304015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The GPCR DP1 promotes the activity of L-PGDS, the enzyme that produces the DP1 agonist PGD2, while at the same time L-PGDS promotes the export and activity of DP1 in response to PGD2. Export of newly synthesized G protein–coupled receptors (GPCRs) remains poorly characterized. We show in this paper that lipocalin-type prostaglandin D2 (PGD2) synthase (L-PGDS) interacts intracellularly with the GPCR DP1 in an agonist-independent manner. L-PGDS promotes cell surface expression of DP1, but not of other GPCRs, in HEK293 and HeLa cells, independent of L-PGDS enzyme activity. In addition, formation of a DP1–Hsp90 complex necessary for DP1 export to the cell surface is dependent on the interaction between L-PGDS and the C-terminal MEEVD residues of Hsp90. Surprisingly, PGD2 synthesis by L-PGDS is promoted by coexpression of DP1, suggesting a possible intracrine/autocrine signaling mechanism. In this regard, L-PGDS increases the formation of a DP1–ERK1/2 complex and increases DP1-mediated ERK1/2 signaling. Our findings define a novel cooperative mechanism in which a GPCR (DP1) promotes the activity of the enzyme (L-PGDS) that produces its agonist (PGD2) and in which this enzyme in turn acts as a cofactor (of Hsp90) to promote export and agonist-dependent activity of the receptor.
Collapse
Affiliation(s)
- Chantal Binda
- Service de Rhumatologie, Département de Médecine, 2 Programme d'Immunologie, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, and 3 Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
18
|
Shimamoto S, Maruo H, Yoshida T, Ohkubo T. ¹H, ¹³C, and ¹⁵N resonance assignments of mouse lipocalin-type prostaglandin D synthase/substrate analog complex. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:129-132. [PMID: 23361378 DOI: 10.1007/s12104-013-9467-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Lipocalin-type Prostaglandin D synthase (L-PGDS) acts as the PGD2-synthesizing enzyme in the brain of various mammalian species. It belongs to the lipocalin superfamily and is the first member of this family to be recognized as an enzyme. Although the solution and crystal structure of L-PGDS has been determined to understand the molecular mechanism of catalytic reaction, the structural analysis of L-PGDS in complex with its substrate remains to be performed. Here, we present the nearly complete assignment of the backbone and side chain resonances of L-PGDS/substrate analog (U-46619) complex. This study lays the essential basis for further understanding the substrate recognition mechanism of L-PGDS.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan,
| | | | | | | |
Collapse
|
19
|
Fine-tuned broad binding capability of human lipocalin-type prostaglandin D synthase for various small lipophilic ligands. FEBS Lett 2014; 588:962-9. [DOI: 10.1016/j.febslet.2014.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/22/2022]
|
20
|
Lim SM, Chen D, Teo H, Roos A, Jansson AE, Nyman T, Trésaugues L, Pervushin K, Nordlund P. Structural and dynamic insights into substrate binding and catalysis of human lipocalin prostaglandin D synthase. J Lipid Res 2013; 54:1630-1643. [PMID: 23526831 PMCID: PMC3646464 DOI: 10.1194/jlr.m035410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Indexed: 01/20/2023] Open
Abstract
Lipocalin prostaglandin D synthase (L-PGDS) regulates synthesis of an important inflammatory and signaling mediator, prostaglandin D2 (PGD2). Here, we used structural, biophysical, and biochemical approaches to address the mechanistic aspects of substrate entry, catalysis, and product exit of this enzyme. Structure of human L-PGDS was solved in a complex with a substrate analog (SA) and in ligand-free form. Its catalytic Cys 65 thiol group was found in two different conformations, each making a distinct hydrogen bond network to neighboring residues. These help in elucidating the mechanism of the cysteine nucleophile activation. Electron density for ligand observed in the active site defined the substrate binding regions, but did not allow unambiguous fitting of the SA. To further understand ligand binding, we used NMR spectroscopy to map the binding sites and to show the dynamics of protein-substrate and protein-product interactions. A model for ligand binding at the catalytic site is proposed, showing a second binding site involved in ligand exit and entry. NMR chemical shift perturbations and NMR resonance line-width alterations (observed as changes of intensity in two-dimensional cross-peaks in [¹H,¹⁵N]-transfer relaxation optimization spectroscopy) for residues at the Ω loop (A-B loop), E-F loop, and G-H loop besides the catalytic sites indicate involvement of these residues in ligand entry/egress.
Collapse
Affiliation(s)
- Sing Mei Lim
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dan Chen
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and
| | - Hsiangling Teo
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and
| | - Annette Roos
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Elisabet Jansson
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lionel Trésaugues
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Konstantin Pervushin
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and.
| | - Pär Nordlund
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Systematic interaction analysis of human lipocalin-type prostaglandin D synthase with small lipophilic ligands. Biochem J 2012; 446:279-89. [DOI: 10.1042/bj20120324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
L-PGDS [lipocalin-type PG (prostaglandin) D synthase] is a multi-functional protein, acting as a PGD2-producing enzyme and a lipid-transporter. In the present study, we focus on the function of L-PGDS as an extracellular transporter for small lipophilic molecules. We characterize the binding mechanism of human L-PGDS for the molecules, especially binding affinity stoichiometry and driving force, using tryptophan fluorescence quenching, ICD (induced circular dichroism) and ITC (isothermal titration calorimetry). The tryptophan fluorescence quenching measurements revealed that haem metabolites such as haemin, biliverdin and bilirubin bind to L-PGDS with significantly higher affinities than the other small lipophilic ligands examined, showing dissociation constant (Kd) values from 17.0 to 20.9 nM. We focused particularly on the extra-specificities of haem metabolites and L-PGDS. The ITC and ICD data revealed that two molecules of the haem metabolites bind to L-PGDS with high and low affinities, showing Kd values from 2.8 to 18.1 nM and from 0.209 to 1.63 μM respectively. The thermodynamic parameters for the interactions revealed that the contributions of enthalpy and entropy change were considerably different for each haem metabolite even when the Gibbs energy change was the same. Thus we believe that the binding energy of haem metabolites to L-PGDS is optimized by balancing enthalpy and entropy change.
Collapse
|
22
|
Lipocalin-type prostaglandin D synthase protects against oxidative stress-induced neuronal cell death. Biochem J 2012; 443:75-84. [PMID: 22248185 DOI: 10.1042/bj20111889] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
L-PGDS [lipocalin-type PGD (prostaglandin D) synthase] is a dual-functional protein, acting as a PGD2-producing enzyme and a lipid transporter. L-PGDS is a member of the lipocalin superfamily and can bind a wide variety of lipophilic molecules. In the present study we demonstrate the protective effect of L-PGDS on H2O2-induced apoptosis in neuroblastoma cell line SH-SY5Y. L-PGDS expression was increased in H2O2-treated neuronal cells, and the L-PGDS level was highly associated with H2O2-induced apoptosis, indicating that L-PGDS protected the neuronal cells against H2O2-mediated cell death. A cell viability assay revealed that L-PGDS protected against H2O2-induced cell death in a concentration-dependent manner. Furthermore, the titration of free thiols in H2O2-treated L-PGDS revealed that H2O2 reacted with the thiol of Cys65 of L-PGDS. The MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight)-MS spectrum of H2O2-treated L-PGDS showed a 32 Da increase in the mass relative to that of the untreated protein, showing that the thiol was oxidized to sulfinic acid. The binding affinities of oxidized L-PGDS for lipophilic molecules were comparable with those of untreated L-PGDS. Taken together, these results demonstrate that L-PGDS protected against neuronal cell death by scavenging reactive oxygen species without losing its ligand-binding function. The novel function of L-PGDS could be useful for the suppression of oxidative stress-mediated neurodegenerative diseases.
Collapse
|
23
|
Miyamoto Y, Noda Y, Iida T, Yamaguchi K, Nishimura S, Tanaka A, Segawa SI, Inui T. NMR and CD analysis of an intermediate state in the thermal unfolding process of mouse lipocalin-type prostaglandin D synthase. J Biochem 2012; 151:335-42. [PMID: 22210903 DOI: 10.1093/jb/mvr140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that the thermal unfolding of mouse lipocalin-type prostaglandin D synthase (L-PGDS) is a completely reversible process under acidic conditions and follows a three-state pathway, including an intermediate state (I) between native state (N) and unfolded state. In the present study, we investigated the intermediate state of mouse C65A L-PGDS and clarified the local conformational changes in the upper and bottom regions by using NMR and CD spectroscopy. The (1)H-(15)N HSQC measurements revealed that the backbone conformation was disrupted in the upper region of the β-barrel at 45°C, which is around the T(m) value for the N ↔ I transition, but that the signals of the residues located at the bottom region of L-PGDS remained at 54°C, where the maximum accumulation of the intermediate state was found. (1)H-NMR and CD measurements showed that the T(m) values obtained by monitoring Trp54 at the upper region and Trp43 at the bottom region of the β-barrel were 41.4 and 47.5°C, respectively, suggesting that the conformational change in the upper region occurred at a lower temperature than that in the bottom region. These findings demonstrate that the backbone conformation of the bottom region is still maintained in the intermediate state.
Collapse
Affiliation(s)
- Yuya Miyamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fukuhara A, Nakajima H, Miyamoto Y, Inoue K, Kume S, Lee YH, Noda M, Uchiyama S, Shimamoto S, Nishimura S, Ohkubo T, Goto Y, Takeuchi T, Inui T. Drug delivery system for poorly water-soluble compounds using lipocalin-type prostaglandin D synthase. J Control Release 2011; 159:143-50. [PMID: 22226778 DOI: 10.1016/j.jconrel.2011.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/15/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily and a secretory lipid-transporter protein, which binds a wide variety of hydrophobic small molecules. Here we show the feasibility of a novel drug delivery system (DDS), utilizing L-PGDS, for poorly water-soluble compounds such as diazepam (DZP), a major benzodiazepine anxiolytic drug, and 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist and anticonvulsant. Calorimetric experiments revealed for both compounds that each L-PGDS held three molecules with high binding affinities. By mass spectrometry, the 1:3 complex of L-PGDS and NBQX was observed. L-PGDS of 500μM increased the solubility of DZP and NBQX 7- and 2-fold, respectively, compared to PBS alone. To validate the potential of L-PGDS as a drug delivery vehicle in vivo, we have proved the prospective effects of these compounds via two separate delivery strategies. First, the oral administration of a DZP/L-PGDS complex in mice revealed an increased duration of pentobarbital-induced loss of righting reflex. Second, the intravenous treatment of ischemic gerbils with NBQX/L-PGDS complex showed a protective effect on delayed neuronal cell death at the hippocampal CA1 region. We propose that our novel DDS could facilitate pharmaceutical development and clinical usage of various water-insoluble compounds.
Collapse
Affiliation(s)
- Ayano Fukuhara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
SHIMAMOTO S, YOSHIDA T, OHKUBO T. Ligand Recognition Mechanism of Lipocalin-type Prostaglandin D Synthase. YAKUGAKU ZASSHI 2011; 131:1575-81. [DOI: 10.1248/yakushi.131.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shigeru SHIMAMOTO
- Faculty of Science and Technology, Kinki University
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takuya YOSHIDA
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tadayasu OHKUBO
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
26
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
27
|
Giannetti AM, Wong H, Dijkgraaf GJP, Dueber EC, Ortwine DF, Bravo BJ, Gould SE, Plise EG, Lum BL, Malhi V, Graham RA. Identification, Characterization, and Implications of Species-Dependent Plasma Protein Binding for the Oral Hedgehog Pathway Inhibitor Vismodegib (GDC-0449). J Med Chem 2011; 54:2592-601. [DOI: 10.1021/jm1008924] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Harvey Wong
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Erin C. Dueber
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel F. Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brandon J. Bravo
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephen E. Gould
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emile G. Plise
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bert L. Lum
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vikram Malhi
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard A. Graham
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
28
|
Madl T, Gabel F, Sattler M. NMR and small-angle scattering-based structural analysis of protein complexes in solution. J Struct Biol 2010; 173:472-82. [PMID: 21074620 DOI: 10.1016/j.jsb.2010.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 01/14/2023]
Abstract
Structural analysis of multi-domain protein complexes is a key challenge in current biology and a prerequisite for understanding the molecular basis of essential cellular processes. The use of solution techniques is important for characterizing the quaternary arrangements and dynamics of domains and subunits of these complexes. In this respect solution NMR is the only technique that allows atomic- or residue-resolution structure determination and investigation of dynamic properties of multi-domain proteins and their complexes. As experimental NMR data for large protein complexes are sparse, it is advantageous to combine these data with additional information from other solution techniques. Here, the utility and computational approaches of combining solution state NMR with small-angle X-ray and Neutron scattering (SAXS/SANS) experiments for structural analysis of large protein complexes is reviewed. Recent progress in experimental and computational approaches of combining NMR and SAS are discussed and illustrated with recent examples from the literature. The complementary aspects of combining NMR and SAS data for studying multi-domain proteins, i.e. where weakly interacting domains are connected by flexible linkers, are illustrated with the structural analysis of the tandem RNA recognition motif (RRM) domains (RRM1-RRM2) of the human splicing factor U2AF65 bound to a nine-uridine (U9) RNA oligonucleotide.
Collapse
Affiliation(s)
- Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
29
|
Theoretical studies on model reaction pathways of prostaglandin H2 isomerization to prostaglandin D2/E2. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0814-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Jacques DA, Trewhella J. Small-angle scattering for structural biology--expanding the frontier while avoiding the pitfalls. Protein Sci 2010; 19:642-57. [PMID: 20120026 PMCID: PMC2867006 DOI: 10.1002/pro.351] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/17/2010] [Accepted: 01/19/2010] [Indexed: 12/18/2022]
Abstract
The last decade has seen a dramatic increase in the use of small-angle scattering for the study of biological macromolecules in solution. The drive for more complete structural characterization of proteins and their interactions, coupled with the increasing availability of instrumentation and easy-to-use software for data analysis and interpretation, is expanding the utility of the technique beyond the domain of the biophysicist and into the realm of the protein scientist. However, the absence of publication standards and the ease with which 3D models can be calculated against the inherently 1D scattering data means that an understanding of sample quality, data quality, and modeling assumptions is essential to have confidence in the results. This review is intended to provide a road map through the small-angle scattering experiment, while also providing a set of guidelines for the critical evaluation of scattering data. Examples of current best practice are given that also demonstrate the power of the technique to advance our understanding of protein structure and function.
Collapse
Affiliation(s)
| | - Jill Trewhella
- School of Molecular and Microbial Biosciences, The University of SydneySydney, New South Wales 2006, Australia
| |
Collapse
|