1
|
Guilvout I, Samsudin F, Huber RG, Bond PJ, Bardiaux B, Francetic O. Membrane platform protein PulF of the Klebsiella type II secretion system forms a trimeric ion channel essential for endopilus assembly and protein secretion. mBio 2024; 15:e0142323. [PMID: 38063437 PMCID: PMC10790770 DOI: 10.1128/mbio.01423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | | | - Peter J. Bond
- Bioinformatics Institute (A-STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| |
Collapse
|
2
|
Kamoun F, Weekers F, Ayed RB, Mechri S, Jabeur F, Thonart P, Jaouadi B. Multiple linear regression models to simulate spore yields of Bacillus amyloliquefaciens BS13 through optimization of medium composition. Biotechnol Appl Biochem 2022; 69:2686-2697. [PMID: 34994000 DOI: 10.1002/bab.2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022]
Abstract
Bacillus amyloliquefaciens is a food spoilage spore-forming bacterium. Its spores are useful for multiple biotechnological applications. Nevertheless, few reports are available regarding the achievement of a high cell density and good sporulation effectiveness under fermentation conditions. Therefore, the current study was designed to optimize a low-cost fermentation medium allowing the highest sporulation yield by B. amyloliquefaciens strain BS13. Our data revealed that tryptone and starch were the best carbon and energy sources. In addition, two nitrogen sources namely, corn steep liquor (CSL) and yeast extract (YE), allowed a significant enhancement of spore production and they were both retained for further optimization. A combination of CaCl2 , MgSO4 , and MnSO4 showed a positive impact on spores' production. The composition of the optimized medium was (in g/L); tryptone 3, starch 15, CSL 13.5, YE 1.5, CaCl2 0.1, MgSO4 ·7H2 O 0.012, and MnSO4 ·7H2 O 0.0012. Such medium was further validated in a 400-L fermentor. The spore yield by B. amyloliquefaciens strain BS13 was enhanced from 3.0 × 1010 spores/mL under flask culture conditions to 6.2 × 1010 spores/mL when cultures were performed on large scale. Therefore, strain BS13 spore preparation could be proposed as a promising probiotic and a biocontrol agent useful for plants, animals, and humans.
Collapse
Affiliation(s)
- Fakher Kamoun
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | | | - Rayda Ben Ayed
- Laboratoire de Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Sondes Mechri
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Fadoua Jabeur
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Thonart
- Centre Wallon de Biologie Industrielle, Unité de Technologie Microbienne, Université de Liège, Liège, Belgium
| | - Bassem Jaouadi
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
To Feed or to Stick? Genomic Analysis Offers Clues for the Role of a Molecular Machine in Endospore Formers. J Bacteriol 2022; 204:e0018722. [PMID: 35913150 PMCID: PMC9487464 DOI: 10.1128/jb.00187-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sporulation in Firmicutes starts with the formation of two adjacent cells and proceeds with the engulfment of the smaller one, the forespore, by the larger one, the mother cell. This critical step involves a core set of conserved genes, some transcribed in the forespore, such as spoIIQ, and others transcribed in the mother cell, such as the eight-gene spoIIIA operon. A model has been proposed in which the SpoIIIA and the SpoIIQ proteins form a channel connecting the mother cell and the forespore, playing the role of a secretion apparatus allowing the mother cell to nurture the fully engulfed forespore. Exploration of the genomes of Caryophanaceae and Erysipelotrichales has provided informations that are not fully congruent with data from Bacillaceae or Clostridia. The differences observed are correlated with specific physiological features, and alternate, not mutually exclusive views of the function of the SpoIIIA-SpoIIQ complex are presented.
Collapse
|
4
|
Soto-Avila L, Merce RC, Santos W, Castañeda N, Gutierrez-Ríos RM. Distribution and preservation of the components of the engulfment. What is beyond representative genomes? PLoS One 2021; 16:e0246651. [PMID: 33651833 PMCID: PMC7924749 DOI: 10.1371/journal.pone.0246651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2021] [Indexed: 12/16/2022] Open
Abstract
Engulfment requires the coordinated, targeted synthesis and degradation of peptidoglycan at the leading edge of the engulfing membrane to allow the mother cell to completely engulf the forespore. Proteins such as the DMP and Q:AH complexes in Bacillus subtilis are essential for engulfment, as are a set of accessory proteins including GerM and SpoIIB, among others. Experimental and bioinformatic studies of these proteins in bacteria distinct from Bacillus subtilis indicate that fundamental differences exist regarding the organization and mechanisms used to successfully perform engulfment. As a consequence, the distribution and prevalence of the proteins involved in engulfment and other proteins that participate in different sporulation stages have been studied using bioinformatic approaches. These works are based on the prediction of orthologs in the genomes of representative Firmicutes and have been helpful in tracing hypotheses about the origin and evolution of sporulation genes, some of which have been postulated as sporulation signatures. To date, an extensive study of these signatures outside of the representative Firmicutes is not available. Here, we asked whether phyletic profiles of proteins involved in engulfment can be used as signatures able to describe the sporulation phenotype. We tested this hypothesis in a set of 954 Firmicutes, finding preserved phyletic profiles defining signatures at the genus level. Finally, a phylogenetic reconstruction based on non-redundant phyletic profiles at the family level shows the non-monophyletic origin of these proteins due to gain/loss events along the phylum Firmicutes.
Collapse
Affiliation(s)
- Lizeth Soto-Avila
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- Centro de Investigacion en Dinamica Celular, Instituto de Investigacion en Ciencias Basicas y Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Ricardo Ciria Merce
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Walter Santos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Nori Castañeda
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Rosa-María Gutierrez-Ríos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
5
|
Riley EP, Lopez-Garrido J, Sugie J, Liu RB, Pogliano K. Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation. SCIENCE ADVANCES 2021; 7:eabd6385. [PMID: 33523946 PMCID: PMC10670878 DOI: 10.1126/sciadv.abd6385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Despite intensive research, the role of metabolism in bacterial sporulation remains poorly understood. Here, we demonstrate that Bacillus subtilis sporulation entails a marked metabolic differentiation of the two cells comprising the sporangium: the forespore, which becomes the dormant spore, and the mother cell, which dies as sporulation completes. Our data provide evidence that metabolic precursor biosynthesis becomes restricted to the mother cell and that the forespore becomes reliant on mother cell-derived metabolites for protein synthesis. We further show that arginine is trafficked between the two cells and that proposed proteinaceous channels mediate small-molecule intercellular transport. Thus, sporulation entails the profound metabolic reprogramming of the forespore, which is depleted of key metabolic enzymes and must import metabolites from the mother cell. Together, our results provide a bacterial example analogous to progeny nurturing.
Collapse
Affiliation(s)
- Eammon P Riley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Roland B Liu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
7
|
Parrell D, Kroos L. Channels modestly impact compartment-specific ATP levels during Bacillus subtilis sporulation and a rise in the mother cell ATP level is not necessary for Pro-σ K cleavage. Mol Microbiol 2020; 114:563-581. [PMID: 32515031 DOI: 10.1111/mmi.14560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023]
Abstract
Starvation of Bacillus subtilis initiates endosporulation involving formation of mother cell (MC) and forespore (FS) compartments. During engulfment, the MC membrane migrates around the FS and protein channels connect the two compartments. The channels are necessary for postengulfment FS gene expression, which relieves inhibition of SpoIVFB, an intramembrane protease that cleaves Pro-σK , releasing σK into the MC. SpoIVFB has an ATP-binding domain exposed to the MC cytoplasm, but the role of ATP in regulating Pro-σK cleavage has been unclear, as has the impact of the channels on MC and FS ATP levels. Using luciferase produced separately in each compartment to measure relative ATP concentrations during sporulation, we found that the MC ATP concentration rises about twofold coincident with increasing cleavage of Pro-σK , and the FS ATP concentration does not decline. Mutants lacking a channel protein or defective in channel protein turnover exhibited modest and varied effects on ATP levels, which suggested that low ATP concentration does not explain the lack of postengulfment FS gene expression in channel mutants. Furthermore, a rise in the MC ATP level was not necessary for Pro-σK cleavage by SpoIVFB, based on analysis of mutants that bypass the need for relief of SpoIVFB inhibition.
Collapse
Affiliation(s)
- Daniel Parrell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Zeytuni N, Strynadka NCJ. A Hybrid Secretion System Facilitates Bacterial Sporulation: A Structural Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0013-2018. [PMID: 30681070 PMCID: PMC11588154 DOI: 10.1128/microbiolspec.psib-0013-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 02/01/2023] Open
Abstract
Bacteria employ a number of dedicated secretion systems to export proteins to the extracellular environment. Several of these comprise large complexes that assemble in and around the bacterial membrane(s) to form specialized channels through which only selected proteins are actively delivered. Although typically associated with bacterial pathogenicity, a specialized variant of these secretion systems has been proposed to play a central part in bacterial sporulation, a primitive protective process that allows starving cells to form spores that survive in extreme environments. Following asymmetric division, the mother cell engulfs the forespore, leaving it surrounded by two bilayer membranes. During the engulfment process an essential channel apparatus is thought to cross both membranes to create a direct conduit between the mother cell and forespore. At least nine proteins are essential for channel formation, including SpoIIQ under forespore control and the eight SpoIIIA proteins (SpoIIIAA to -AH) under mother cell control. Presumed to form a core channel complex, several of these proteins share similarity with components of Gram-negative bacterial secretion systems, including the type II, III, and IV secretion systems and the flagellum. Based on these similarities it has been suggested that the sporulation channel represents a hybrid, secretion-like transport machinery. Recently, in-depth biochemical and structural characterization of the individual channel components accompanied by in vivo studies has further reinforced this model. Here we review and discuss these recent studies and suggest an updated model for the unique sporulation channel apparatus architecture.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
9
|
Structural and biochemical characterization of SpoIIIAF, a component of a sporulation-essential channel in Bacillus subtilis. J Struct Biol 2018; 204:1-8. [DOI: 10.1016/j.jsb.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022]
|
10
|
Structural characterization of the sporulation protein GerM from Bacillus subtilis. J Struct Biol 2018; 204:481-490. [PMID: 30266596 DOI: 10.1016/j.jsb.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/28/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis responds to starvation by entering a morphological differentiation process leading to the formation of a highly resistant spore. Early in the sporulation process, the cell asymmetrically divides into a large compartment (the mother cell) and a smaller one (the forespore), which will maturate into a resistant spore. Proper development of the forespore requires the assembly of a multiprotein complex called the SpoIIIA-SpoIIQ complex or "A-Q complex". This complex involves the forespore protein SpoIIQ and eight mother cell proteins (SpoIIIAA to SpoIIIAH), many of which share structural similarities with components of specialized secretion systems and flagella found in Gram-negative bacteria. The assembly of the A-Q complex across the two membranes that separate the mother cell and forespore was recently shown to require GerM. GerM is a lipoprotein composed of two GerMN domains, a family of domains with unknown function. Here, we report X-ray crystallographic structures of the first GerMN domain of GerM at 1.0 Å resolution, and of the soluble domain of GerM (the tandem of GerMN domains) at 2.1 Å resolution. These structures reveal that GerMN domains can adopt distinct conformations and that the core of these domains display structural similarities with ring-building motifs found in components of specialized secretion system and in SpoIIIA proteins. This work provides an additional piece towards the structural characterization of the A-Q complex.
Collapse
|