1
|
Ma J, Yi G, Ye M, MacGregor-Chatwin C, Sheng Y, Lu Y, Li M, Li Q, Wang D, Gilbert RJC, Zhang P. Open architecture of archaea MCM and dsDNA complexes resolved using monodispersed streptavidin affinity CryoEM. Nat Commun 2024; 15:10304. [PMID: 39604363 PMCID: PMC11603195 DOI: 10.1038/s41467-024-53745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
The cryo-electron microscopy (cryoEM) method has enabled high-resolution structure determination of numerous biomolecules and complexes. Nevertheless, cryoEM sample preparation of challenging proteins and complexes, especially those with low abundance or with preferential orientation, remains a major hurdle. We developed an affinity-grid method employing monodispersed single particle streptavidin on a lipid monolayer to enhance particle absorption on the grid surface and alleviate sample exposure to the air-water interface. Using this approach, we successfully enriched the Thermococcus kodakarensis mini-chromosome maintenance complex 3 (MCM3) on cryoEM grids through biotinylation and resolved its structure. We further utilized this affinity method to tether the biotin-tagged dsDNA to selectively enrich a stable MCM3-ATP-dsDNA complex for cryoEM structure determination. Intriguingly, both MCM3 apo and dsDNA bound structures exhibit left-handed open spiral conformations, distinct from other reported MCM structures. The large open gate is sufficient to accommodate a dsDNA which could potentially be melted. The value of mspSA affinity method was further demonstrated by mitigating the issue of preferential angular distribution of HIV-1 capsid protein hexamer and RNA polymerase II elongation complex from Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jianbing Ma
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Gangshun Yi
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford, UK
| | - Mingda Ye
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Qingrong Li
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Zhao Q, Hong X, Wang Y, Zhang S, Ding Z, Meng X, Song Q, Hong Q, Jiang W, Shi X, Cai T, Cong Y. An immobilized antibody-based affinity grid strategy for on-grid purification of target proteins enables high-resolution cryo-EM. Commun Biol 2024; 7:715. [PMID: 38858498 PMCID: PMC11164986 DOI: 10.1038/s42003-024-06406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
In cryo-electron microscopy (cryo-EM), sample preparation poses a critical bottleneck, particularly for rare or fragile macromolecular assemblies and those suffering from denaturation and particle orientation distribution issues related to air-water interface. In this study, we develop and characterize an immobilized antibody-based affinity grid (IAAG) strategy based on the high-affinity PA tag/NZ-1 antibody epitope tag system. We employ Pyr-NHS as a linker to immobilize NZ-1 Fab on the graphene oxide or carbon-covered grid surface. Our results demonstrate that the IAAG grid effectively enriches PA-tagged target proteins and overcomes preferred orientation issues. Furthermore, we demonstrate the utility of our IAAG strategy for on-grid purification of low-abundance target complexes from cell lysates, enabling atomic resolution cryo-EM. This approach greatly streamlines the purification process, reduces the need for large quantities of biological samples, and addresses common challenges encountered in cryo-EM sample preparation. Collectively, our IAAG strategy provides an efficient and robust means for combined sample purification and vitrification, feasible for high-resolution cryo-EM. This approach holds potential for broader applicability in both cryo-EM and cryo-electron tomography (cryo-ET).
Collapse
Affiliation(s)
- Qiaoyu Zhao
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoyu Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shaoning Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Zhanyu Ding
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xueming Meng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qianqian Song
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wanying Jiang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermo Fisher Scientific, Shanghai, China
| | - Tianxun Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Sarsam RD, Xu J, Lahiri I, Gong W, Li Q, Oh J, Zhou Z, Hou P, Chong J, Hao N, Li S, Wang D, Leschziner AE. Elf1 promotes Rad26's interaction with lesion-arrested Pol II for transcription-coupled repair. Proc Natl Acad Sci U S A 2024; 121:e2314245121. [PMID: 38194460 PMCID: PMC10801861 DOI: 10.1073/pnas.2314245121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is a highly conserved DNA repair pathway that removes bulky lesions in the transcribed genome. Cockayne syndrome B protein (CSB), or its yeast ortholog Rad26, has been known for decades to play important roles in the lesion-recognition steps of TC-NER. Another conserved protein ELOF1, or its yeast ortholog Elf1, was recently identified as a core transcription-coupled repair factor. How Rad26 distinguishes between RNA polymerase II (Pol II) stalled at a DNA lesion or other obstacles and what role Elf1 plays in this process remains unknown. Here, we present cryo-EM structures of Pol II-Rad26 complexes stalled at different obstacles that show that Rad26 uses a common mechanism to recognize a stalled Pol II, with additional interactions when Pol II is arrested at a lesion. A cryo-EM structure of lesion-arrested Pol II-Rad26 bound to Elf1 revealed that Elf1 induces further interactions between Rad26 and a lesion-arrested Pol II. Biochemical and genetic data support the importance of the interplay between Elf1 and Rad26 in TC-NER initiation. Together, our results provide important mechanistic insights into how two conserved transcription-coupled repair factors, Rad26/CSB and Elf1/ELOF1, work together at the initial lesion recognition steps of transcription-coupled repair.
Collapse
Affiliation(s)
- Reta D. Sarsam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Wenzhi Gong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA70803
| | - Qingrong Li
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Peini Hou
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA70803
| | - Dong Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Cookis T, Sauer P, Poepsel S, Han BG, Herbst DA, Glaeser R, Nogales E. Streptavidin-Affinity Grid Fabrication for Cryo-Electron Microscopy Sample Preparation. J Vis Exp 2023:10.3791/66197. [PMID: 38224121 PMCID: PMC11293040 DOI: 10.3791/66197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Streptavidin affinity grids provide strategies to overcome many commonly encountered cryo-electron microscopy (cryo-EM) sample preparation challenges, including sample denaturation and preferential orientations that can occur due to the air-water interface. Streptavidin affinity grids, however, are currently utilized by few cryo-EM labs because they are not commercially available and require a careful fabrication process. Two-dimensional streptavidin crystals are grown onto a biotinylated lipid monolayer that is applied directly to standard holey-carbon cryo-EM grids. The high-affinity interaction between streptavidin and biotin allows for the subsequent binding of biotinylated samples that are protected from the air-water interface during cryo-EM sample preparation. Additionally, these grids provide a strategy for concentrating samples available in limited quantities and purifying protein complexes of interest directly on the grids. Here, a step-by-step, optimized protocol is provided for the robust fabrication of streptavidin affinity grids for use in cryo-EM and negative-stain experiments. Additionally, a trouble-shooting guide is included for commonly experienced challenges to make the use of streptavidin affinity grids more accessible to the larger cryo-EM community.
Collapse
Affiliation(s)
- Trinity Cookis
- Department of Molecular and Cell Biology, University of California, Berkeley;
| | - Paul Sauer
- California Institute for Quantitative Biology (QB3), University of California, Berkeley; Howard Hughes Medical Institute, University of California, Berkeley
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne
| | - Bong-Gyoon Han
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| | - Dominik A Herbst
- Department of Molecular and Cell Biology, University of California, Berkeley; California Institute for Quantitative Biology (QB3), University of California, Berkeley; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| | - Robert Glaeser
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley; California Institute for Quantitative Biology (QB3), University of California, Berkeley; Howard Hughes Medical Institute, University of California, Berkeley; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| |
Collapse
|
5
|
Carminati M, Rodríguez-Molina JB, Manav MC, Bellini D, Passmore LA. A direct interaction between CPF and RNA Pol II links RNA 3' end processing to transcription. Mol Cell 2023; 83:4461-4478.e13. [PMID: 38029752 PMCID: PMC10783616 DOI: 10.1016/j.molcel.2023.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.
Collapse
Affiliation(s)
| | | | - M Cemre Manav
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
6
|
Karasmanis EP, Reimer JM, Kendrick AA, Nguyen KHV, Rodriguez JA, Truong JB, Lahiri I, Reck-Peterson SL, Leschziner AE. Lis1 relieves cytoplasmic dynein-1 autoinhibition by acting as a molecular wedge. Nat Struct Mol Biol 2023; 30:1357-1364. [PMID: 37620585 PMCID: PMC10497415 DOI: 10.1038/s41594-023-01069-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Cytoplasmic dynein-1 transports intracellular cargo towards microtubule minus ends. Dynein is autoinhibited and undergoes conformational changes to form an active complex that consists of one or two dynein dimers, the dynactin complex, and activating adapter(s). The Lissencephaly 1 gene, LIS1, is genetically linked to the dynein pathway from fungi to mammals and is mutated in people with the neurodevelopmental disease lissencephaly. Lis1 is required for active dynein complexes to form, but how it enables this is unclear. Here, we present a structure of two yeast dynein motor domains with two Lis1 dimers wedged in-between. The contact sites between dynein and Lis1 in this structure, termed 'Chi,' are required for Lis1's regulation of dynein in Saccharomyces cerevisiae in vivo and the formation of active human dynein-dynactin-activating adapter complexes in vitro. We propose that this structure represents an intermediate in dynein's activation pathway, revealing how Lis1 relieves dynein's autoinhibited state.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kendrick H V Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jennifer A Rodriguez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joey B Truong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Indrajit Lahiri
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Ramlaul K, Feng Z, Canavan C, de Martín Garrido N, Carreño D, Crone M, Jensen KE, Li B, Barnett H, Riglar DT, Freemont PS, Miller D, Aylett CHS. A 3D-printed flow-cell for on-grid purification of electron microscopy samples directly from lysate. J Struct Biol 2023; 215:107999. [PMID: 37451560 DOI: 10.1016/j.jsb.2023.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
While recent advances in cryo-EM, coupled with single particle analysis, have the potential to allow structure determination in a near-native state from vanishingly few individual particles, this vision has yet to be realised in practise. Requirements for particle numbers that currently far exceed the theoretical lower limits, challenges with the practicalities of achieving high concentrations for difficult-to-produce samples, and inadequate sample-dependent imaging conditions, all result in significant bottlenecks preventing routine structure determination using cryo-EM. Therefore, considerable efforts are being made to circumvent these bottlenecks by developing affinity purification of samples on-grid; at once obviating the need to produce large amounts of protein, as well as more directly controlling the variable, and sample-dependent, process of grid preparation. In this proof-of-concept study, we demonstrate a further practical step towards this paradigm, developing a 3D-printable flow-cell device to allow on-grid affinity purification from raw inputs such as whole cell lysates, using graphene oxide-based affinity grids. Our flow-cell device can be interfaced directly with routinely-used laboratory equipment such as liquid chromatographs, or peristaltic pumps, fitted with standard chromatographic (1/16") connectors, and can be used to allow binding of samples to affinity grids in a controlled environment prior to the extensive washing required to remove impurities. Furthermore, by designing a device which can be 3D printed and coupled to routinely used laboratory equipment, we hope to increase the accessibility of the techniques presented herein to researchers working towards single-particle macromolecular structures.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ziyi Feng
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Caoimhe Canavan
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Natàlia de Martín Garrido
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - David Carreño
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Michael Crone
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kirsten E Jensen
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Bing Li
- Hamlyn Centre, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Harry Barnett
- Imperial College Advanced Hackspace, Imperial College London, London, United Kingdom
| | - David T Riglar
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Paul S Freemont
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - David Miller
- Imperial College Advanced Hackspace, Imperial College London, London, United Kingdom.
| | - Christopher H S Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Han BG, Avila-Sakar A, Remis J, Glaeser RM. Challenges in making ideal cryo-EM samples. Curr Opin Struct Biol 2023; 81:102646. [PMID: 37392555 DOI: 10.1016/j.sbi.2023.102646] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
Recognizing that interaction with the air-water interface (AWI) is a major challenge for cryo-EM, we first review current approaches designed to avoid it. Of these, immobilizing particles on affinity grids is arguably the most promising. In addition, we review efforts to gain more reliable control of the sample thicknesses, not the least important reason being to prevent immobilized particles from coming in contact with the AWI of the remaining buffer. It is emphasized that avoiding such a contact is as important for cryo-ET as for single-particle cryo-EM. Finally, looking to the future, it is proposed that immobilized samples might be used to perform time-resolved biochemical experiments directly on EM grids rather than just in test tubes or cuvettes.
Collapse
Affiliation(s)
- Bong-Gyoon Han
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Agustin Avila-Sakar
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Jonathan Remis
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Robert M Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Fan H, Sun F. Developing Graphene Grids for Cryoelectron Microscopy. Front Mol Biosci 2022; 9:937253. [PMID: 35911962 PMCID: PMC9326159 DOI: 10.3389/fmolb.2022.937253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cryogenic electron microscopy (cryo-EM) single particle analysis has become one of the major techniques used to study high-resolution 3D structures of biological macromolecules. Specimens are generally prepared in a thin layer of vitrified ice using a holey carbon grid. However, the sample quality using this type of grid is not always ideal for high-resolution imaging even when the specimens in the test tube behave ideally. Various problems occur during a vitrification procedure, including poor/nonuniform distribution of particles, preferred orientation of particles, specimen denaturation/degradation, high background from thick ice, and beam-induced motion, which have become important bottlenecks in high-resolution structural studies using cryo-EM in many projects. In recent years, grids with support films made of graphene and its derivatives have been developed to efficiently solve these problems. Here, the various advantages of graphene grids over conventional holey carbon film grids, functionalization of graphene support films, production methods of graphene grids, and origins of pristine graphene contamination are reviewed and discussed.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Marechal N, Serrano BP, Zhang X, Weitz CJ. Formation of thyroid hormone revealed by a cryo-EM structure of native bovine thyroglobulin. Nat Commun 2022; 13:2380. [PMID: 35501346 PMCID: PMC9061844 DOI: 10.1038/s41467-022-30082-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Thyroid hormones are essential regulators of metabolism, development, and growth. They are formed from pairs of iodinated tyrosine residues within the precursor thyroglobulin (TG), a 660-kDa homodimer of the thyroid gland, by an oxidative coupling reaction. Tyrosine pairs that give rise to thyroid hormones have been assigned within the structure of human TG, but the process of hormone formation is poorly understood. Here we report a ~3.3-Å cryo-EM structure of native bovine TG with nascent thyroid hormone formed at one of the predicted hormonogenic sites. Local structural rearrangements provide insight into mechanisms underlying thyroid hormone formation and stabilization. Thyroid hormones are formed within the precursor Thyroglobulin by a poorly understood process. Here Marechal et al. report a cryo-EM structure of native bovine Thyroglobulin with nascent thyroid hormone formed at a predicted hormone synthesis site.
Collapse
|
11
|
Han BG, Armstrong M, Fletcher DA, Glaeser RM. Perspective: Biochemical and Physical Constraints Associated With Preparing Thin Specimens for Single-Particle Cryo-EM. Front Mol Biosci 2022; 9:864829. [PMID: 35573724 PMCID: PMC9100935 DOI: 10.3389/fmolb.2022.864829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
While many aspects of single-particle electron cryo-microscopy (cryo-EM) of biological macromolecules have reached a sophisticated level of development, this is not yet the case when it comes to preparing thin samples on specimen grids. As a result, there currently is considerable interest in achieving better control of both the sample thickness and the amount of area that is useful, but this is only one aspect in which improvement is needed. This Perspective addresses the further need to prevent the macromolecular particles from making contact with the air-water interface, something that can result in preferential orientation and even structural disruption of macromolecular particles. This unwanted contact can occur either as the result of free diffusion of particles during the interval between application, thinning and vitrification of the remaining buffer, or-when particles have been immobilized-by the film of buffer becoming too thin prior to vitrification. An opportunity now exists to apply theoretical and practical insights from the fields of thin-film physical chemistry and interfacial science, in an effort to bring cryo-EM sample preparation to a level of sophistication that is comparable to that of current data collection and analysis.
Collapse
Affiliation(s)
- Bong-Gyoon Han
- Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Max Armstrong
- Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Robert M. Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Robert M. Glaeser,
| |
Collapse
|
12
|
Gillies JP, Reimer JM, Karasmanis EP, Lahiri I, Htet ZM, Leschziner AE, Reck-Peterson SL. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife 2022; 11:e71229. [PMID: 34994688 PMCID: PMC8824474 DOI: 10.7554/elife.71229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein-Lis1 complex. Our 3.1 Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function.
Collapse
Affiliation(s)
- John P Gillies
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Biological Sciences, Indian Institute of Science Education and Research MohaliMohaliIndia
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Molecular Biology Section, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San DiegoSan DiegoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
13
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
14
|
Fan H, Wang B, Zhang Y, Zhu Y, Song B, Xu H, Zhai Y, Qiao M, Sun F. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nat Commun 2021; 12:7257. [PMID: 34907237 PMCID: PMC8671466 DOI: 10.1038/s41467-021-27596-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/27/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) has become a powerful tool to resolve high-resolution structures of biomacromolecules in solution. However, air-water interface induced preferred orientations, dissociation or denaturation of biomacromolecules during cryo-vitrification remains a limiting factor for many specimens. To solve this bottleneck, we developed a cryo-EM support film using 2D crystals of hydrophobin HFBI. The hydrophilic side of the HFBI film adsorbs protein particles via electrostatic interactions and sequesters them from the air-water interface, allowing the formation of sufficiently thin ice for high-quality data collection. The particle orientation distribution can be regulated by adjusting the buffer pH. Using this support, we determined the cryo-EM structures of catalase (2.29 Å) and influenza haemagglutinin trimer (2.56 Å), which exhibited strong preferred orientations using a conventional cryo-vitrification protocol. We further show that the HFBI film is suitable to obtain high-resolution structures of small proteins, including aldolase (150 kDa, 3.28 Å) and haemoglobin (64 kDa, 3.6 Å). Our work suggests that HFBI films may have broad future applications in increasing the success rate and efficiency of cryo-EM.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China.
- School of Life Science, Shanxi University, Shanxi, China.
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, 101400, Beijing, China.
- Bioland Laboratory, 510005, Guangzhou, Guangdong Province, China.
| |
Collapse
|
15
|
Yan C, Dodd T, Yu J, Leung B, Xu J, Oh J, Wang D, Ivanov I. Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nat Commun 2021; 12:7001. [PMID: 34853308 PMCID: PMC8636621 DOI: 10.1038/s41467-021-27295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Transcription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.
Collapse
Affiliation(s)
- Chunli Yan
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Thomas Dodd
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Jina Yu
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Bernice Leung
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Jun Xu
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Juntaek Oh
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA. .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Han BG, Glaeser RM. Simple assay for adsorption of proteins to the air-water interface. J Struct Biol 2021; 213:107798. [PMID: 34534654 DOI: 10.1016/j.jsb.2021.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
A rapid assay is described, based upon the Marangoni effect, which detects the formation of a denatured-protein film at the air-water interface (AWI) of aqueous samples. This assay requires no more than a 20 µL aliquot of sample, at a protein concentration of no more than1 mg/ml, and it can be performed with any buffer that is used to prepare grids for electron cryo-microscopy (cryo-EM). In addition, this assay provides an easy way to estimate the rate at which a given protein forms such a film at the AWI. Use of this assay is suggested as a way to pre-screen the effect of various additives and chemical modifications that one might use to optimize the preparation of grids, although the final proof of optimization still requires further screening of grids in the electron microscope. In those cases when the assay establishes that a given protein does form a sacrificial, denatured-protein monolayer, it is suggested that subsequent optimization strategies might focus on discovering how to improve the adsorption of native proteins onto that monolayer, rather than to prevent its formation. A second alternative might be to bind such proteins to the surface of rationally designed affinity grids, in order to prevent their diffusion to, and unwanted interaction with, the AWI.
Collapse
Affiliation(s)
- Bong-Gyoon Han
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, United States
| | - Robert M Glaeser
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, United States.
| |
Collapse
|
17
|
Glaeser RM. Preparing Better Samples for Cryo-Electron Microscopy: Biochemical Challenges Do Not End with Isolation and Purification. Annu Rev Biochem 2021; 90:451-474. [PMID: 33556280 DOI: 10.1146/annurev-biochem-072020-020231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.
Collapse
Affiliation(s)
- Robert M Glaeser
- Department of Molecular and Cell Biology and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
18
|
Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus. J Virol 2020; 94:JVI.01542-20. [PMID: 32938763 DOI: 10.1128/jvi.01542-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an in vitro reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.IMPORTANCE Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.
Collapse
|
19
|
Abstract
Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Sara Osman
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| |
Collapse
|
20
|
General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM. Proc Natl Acad Sci U S A 2020; 117:24269-24273. [PMID: 32913054 PMCID: PMC7533693 DOI: 10.1073/pnas.2009707117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite the increasing efforts in developing affinity grids to facilitate sample preparation for challenging systems and dynamic complexes, they are not widely used in cryo-electron microscopy (EM) owing to concerns of limiting resolution. We show that our affinity grids extract proteins through covalent bonding with 3.3-Å reconstruction. To our knowledge, no example of small proteins (<200 KDa) has been successfully tested with other affinity grids. With encouraging results further from a mixture sample, we believe that the strategy described here is highly applicable to a broad array of challenging macromolecules and thus is a method of broad interest to the cryo-EM community. The dramatic improvement in cryo-EM sample preparation outlined here paves the way to “purification on the grid.” Affinity grids have great potential to facilitate rapid preparation of even quite impure samples in single-particle cryo-electron microscopy (EM). Yet despite the promising advances of affinity grids over the past decades, no single strategy has demonstrated general utility. Here we chemically functionalize cryo-EM grids coated with mostly one or two layers of graphene oxide to facilitate affinity capture. The protein of interest is tagged using a system that rapidly forms a highly specific covalent bond to its cognate catcher linked to the grid via a polyethylene glycol (PEG) spacer. Importantly, the spacer keeps particles away from both the air–water interface and the graphene oxide surface, protecting them from potential denaturation and rendering them sufficiently flexible to avoid preferential sample orientation concerns. Furthermore, the PEG spacer successfully reduces nonspecific binding, enabling high-resolution reconstructions from a much cruder lysate sample.
Collapse
|
21
|
Cianfrocco MA, Kellogg EH. What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models. J Chem Inf Model 2020; 60:2458-2469. [PMID: 32078321 DOI: 10.1021/acs.jcim.9b01178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cryo-electron microscopy (cryo-EM) has enjoyed explosive recent growth due to revolutionary advances in hardware and software, resulting in a steady stream of long-awaited, high-resolution structures with unprecedented atomic detail. With this comes an increased number of microscopes, cryo-EM facilities, and scientists eager to leverage the ability to determine protein structures without crystallization. However, numerous pitfalls and considerations beset the path toward high-resolution structures and are not necessarily obvious from literature surveys. Here, we detail the most common misconceptions when initiating a cryo-EM project and common technical hurdles, as well as their solutions, and we conclude with a vision for the future of this exciting field.
Collapse
Affiliation(s)
- Michael A Cianfrocco
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics,Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|