1
|
Weiner S, Shahar R. Vertebrate mineralized tissues: A modular structural analysis. Acta Biomater 2024; 179:1-12. [PMID: 38561073 DOI: 10.1016/j.actbio.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ron Shahar
- Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, Hebrew University Jerusalem, P.O.B. 12, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Mazurek D, Antczak M. Late Cretaceous coprolite from the Opole area (southern Poland) as evidence for a variable diet in shell-crushing shark Ptychodus (Elasmobranchii: Ptychodontidae). PeerJ 2023; 11:e16598. [PMID: 38111662 PMCID: PMC10726922 DOI: 10.7717/peerj.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Background Coprolites, i.e., fossilized faeces, are an important source of knowledge on the diet and food processing mechanisms in the fossil record. Direct and indirect evidences for the dietary preferences of extinct sharks are rare in the fossil record. The first coprolite attributable to Ptychodus containing prey remains from the European Cretaceous is documented here. Methods A coprolite from the Late Cretaceous of Opole (southern Poland) was scanned using micro-computed tomography to show the arrangement of the inclusions. In addition, the cross-section was examined under the SEM/EDS to analyse the microstructure and chemical composition of the inclusions. Results Brachiopod shell fragments and foraminiferan shells are recognized and identified among the variously shaped inclusions detected through the performed analysis. Conclusions The extinct shell-crushing shark Ptychodus has been identified as the likely producer of the examined coprolite. The presence of brachiopod shell fragments indicates that at least some species of this durophagous predatory shark may have preyed on small benthic elements on the sea bottom.
Collapse
Affiliation(s)
- Dawid Mazurek
- Institute of Biology, University of Opole, Opole, Polska
- European Centre of Palaeontology, University of Opole, Opole, Poland
| | - Mateusz Antczak
- Institute of Biology, University of Opole, Opole, Polska
- European Centre of Palaeontology, University of Opole, Opole, Poland
| |
Collapse
|
3
|
Milgram J, Rehav K, Ibrahim J, Shahar R, Weiner S. The 3D organization of the mineralized scales of the sturgeon has structures reminiscent of dentin and bone: A FIB-SEM study. J Struct Biol 2023; 215:108045. [PMID: 37977509 DOI: 10.1016/j.jsb.2023.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Scales are structures composed of mineralized collagen fibrils embedded in the skin of fish. Here we investigate structures contributing to the bulk of the scale material of the sturgeon (Acipencer guldenstatii) at the millimeter, micrometer and nanometer length scales. Polished and fracture surfaces were prepared in each of the three anatomic planes for imaging with light and electron microscopy, as well as focused ion beam - scanning electron microscopy (FIB-SEM). The scale is composed of three layers, upper and lower layers forming the bulk of the scale, as well as a thin surface layer. FTIR shows that the scale is composed mainly of collagen and carbonated hydroxyapatite. Lacunae are present throughout the structure. Fracture surfaces of all three layers are characterized by large diameter collagen fibril bundles (CFBs) emanating from a plane comprising smaller diameter CFBs orientated in different directions. Fine lineations seen in polished surfaces of both major layers are used to define planes called here the striation planes. FIB-SEM image stacks of the upper and lower layers acquired in planes aligned with the striation planes, show that CFBs are oriented in various directions within the striation plane, with larger CFBs emanating from the striation plane. Fibril bundles oriented in different directions in the same plane is reminiscent of a similar organization in orthodentin. The large collagen fibril bundles emanating out of this plane are analogous to von Korff fibrils found in developing dentin with respect to size and orientation. Scales of the sturgeon are unusual in that their mineralized collagen fibril organization contains structural elements of both dentin and bone. The sturgeon scale may be an example of an early evolved mineralized material which is neither bone nor dentin but contains characteristics of both materials, however, the fossil data required to confirm this is missing.
Collapse
Affiliation(s)
- Joshua Milgram
- Hebrew University Jerusalem, Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, P.O.B. 12, Rehovot 7610001, Israel.
| | - Katya Rehav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jamal Ibrahim
- Archaeological Science Unit, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ron Shahar
- Hebrew University Jerusalem, Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, P.O.B. 12, Rehovot 7610001, Israel.
| | - Stephen Weiner
- Archaeological Science Unit, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
4
|
Tang T, Landis W, Raguin E, Werner P, Bertinetti L, Dean M, Wagermaier W, Fratzl P. A 3D Network of Nanochannels for Possible Ion and Molecule Transit in Mineralizing Bone and Cartilage. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tengteng Tang
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - William Landis
- Department of Preventive and Restorative Dental Sciences University of California at San Francisco 707 Parnassus Avenue San Francisco CA 94143 USA
| | - Emeline Raguin
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter Werner
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Luca Bertinetti
- Center for Molecular Bioengineering TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Mason Dean
- Department of Infectious Diseases and Public Health City University of Hong Kong 31 To Yuen Street, Tat Chee Avenue Kowloon Hong Kong
| | - Wolfgang Wagermaier
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter Fratzl
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
5
|
Vertebrate Taphonomy and Diagenesis: Implications of Structural and Compositional Alterations of Phosphate Biominerals. MINERALS 2022. [DOI: 10.3390/min12020180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biominerals are recorders of evolution and palaeoenvironments. Predation is one of the most frequent modes leading to the concentration of small vertebrates in fossil assemblages. Consumption by predators produces damages on bones and teeth from prey species, and one of the greatest challenges to taphonomists is differentiating original biological and secondary, geologically altered attributes of fossils. Excellent morphological preservation is often used to assume that the structure and composition of fossils are not modified. Nevertheless, during predation and fossilization, both the physical structure and chemical composition of enamel, dentine and bone are altered, the degree and extent of which varies from site to site, depending on the nature of the burial environment. A relationship between the surficial alterations and the compositional changes which take place during fossilization has yet to be established. Herein, I present a review of old and recent taphonomic studies that collectively reveal the wide diversity of microstructural and chemical changes that typically take place during fossilization of vertebrate remains, including common taphonomic biases and the challenges inherent to reconstructing the history of vertebrate fossil assemblages.
Collapse
|
6
|
Black Drum Fish Teeth: Built for Crushing Mollusk Shells. Acta Biomater 2022; 137:147-161. [PMID: 34673226 DOI: 10.1016/j.actbio.2021.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
With an exclusive diet of hard-shelled mollusks, the black drum fish (Pogonias cromis) exhibits one of the highest bite forces among extant animals. Here we present a systematic microstructural, chemical, crystallographic, and mechanical analysis of the black drum teeth to understand the structural basis for achieving the molluscivorous requirements. At the material level, the outermost enameloid shows higher modulus (Er = 126.9 ± 16.3 GPa, H = 5.0 ± 1.4 GPa) than other reported fish teeth, which is attributed to the stiffening effect of Zn and F doping in apatite crystals and the preferential co-alignment of crystallographic c-axes and enameloid rods along the biting direction. The high fracture toughness (Kc = 1.12 MPa⋅m1/2) of the outer enameloid also promotes local yielding instead of fracture during crushing contact with mollusk shells. At the individual-tooth scale, the molar-like teeth, high density of dentin tubules, enlarged pulp chamber, and specialized dentin-bone connection, all contribute to the functional requirements, including confinement of contact compressive stress in the stiff enameloid, enhanced energy absorption in the compliant dentin, and controlled failure of tooth-bone composite under excessive loads. These results show that the multi-scale structures of black drum teeth are adapted to feed on hard-shelled mollusks. STATEMENT OF SIGNIFICANCE: The black drum fish feeds on hard-shelled mollusks, which requires strong, tough, and wear-resistant teeth. This study presents a comprehensive multiscale material and mechanical analysis of the black drum teeth in achieving such remarkable biological function. At microscale, the fluoride- and zinc-doped apatite crystallites in the outer enameloid region are aligned perpendicular to the chewing surface, representing one of the stiffest biomineralized materials found in nature. In the inner enameloid region, the apatite crystals are arranged into intertwisted rods with crystallographic misorientation for increased crack resistance and toughness. At the macroscale, the molariform geometry, the two-layer design based on the outer enameloid and inner dentin, enlarged pulp chamber and the underlying strong bony toothplate work synergistically to contribute to the teeth's crushing resistance.
Collapse
|
7
|
Weiner S, Raguin E, Shahar R. High resolution 3D structures of mineralized tissues in health and disease. Nat Rev Endocrinol 2021; 17:307-316. [PMID: 33758360 DOI: 10.1038/s41574-021-00479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues. FIB-SEM can be used to study demineralized matrix, the hydrated components of tissue (including cells) using cryo-fixation and even untreated mineralized tissue. The latter requires minimal sample preparation, making it possible to study enough samples to carry out studies capable of detecting statistically significant differences - a pre-requisite for the study of pathological tissues. Here, we present an imaging and characterization strategy for tissue structures at different length scales, describe new insights obtained on healthy mineralized tissues using FIB-SEM, and suggest future research directions for both healthy and diseased mineralized tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
8
|
Raguin E, Rechav K, Shahar R, Weiner S. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures. Acta Biomater 2021; 121:497-513. [PMID: 33217569 DOI: 10.1016/j.actbio.2020.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
The mineralized collagen fibril is the basic building block of bone, and hence is the key to understanding bone structure and function. Here we report imaging of mineralized pig bone samples in 3D using the focused ion beam-scanning electron microscope (FIB-SEM) under conditions that reveal the 67 nm D-banding of mineralized collagen fibrils. We show that in adult pig osteons, the lamellar bone comprises alternating layers with either collagen fibrils predominantly aligned in one direction, and layers in which fibrils are predominantly aligned in two directions. The cement sheath contains thin layers of both these motifs, but its dominant structural component comprises a very complex layer of fibrils predominantly aligned in three or more directions. The degree of mineralization of the cement sheath is comparable to that of the osteon interior. The extent of alignment (dispersion) of the collagen fibrils in the osteonal lamellar bone is significantly higher than in the cement sheath. Canaliculi within the cement sheath are mainly aligned parallel to the cement sheath boundary, whereas in the lamellar bone they are mainly aligned perpendicular to the lamellar boundaries. This study further characterizes the presence of two types of collagen fibril arrangements previously identified in demineralized lamellar bone from other species. The simple sample preparation procedure for mineralized bone and the lower risk of introducing artifacts opens the possibility of using FIB-SEM to study more samples, to obtain automatic quantitative information on collagen fibril organization and to evaluate the degrees of mineralization all in relatively large volumes of bone.
Collapse
|
9
|
Wang Q, Tang T, Cooper D, Eltit F, Fratzl P, Guy P, Wang R. Globular structure of the hypermineralized tissue in human femoral neck. J Struct Biol 2020; 212:107606. [PMID: 32905849 DOI: 10.1016/j.jsb.2020.107606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Bone becomes more fragile with ageing. Among many structural changes, a thin layer of highly mineralized and brittle tissue covers part of the external surface of the thin femoral neck cortex in older people and has been proposed to increase hip fragility. However, there have been very limited reports on this hypermineralized tissue in the femoral neck, especially on its ultrastructure. Such information is critical to understanding both the mineralization process and its contributions to hip fracture. Here, we use multiple advanced techniques to characterize the ultrastructure of the hypermineralized tissue in the neck across various length scales. Synchrotron radiation micro-CT found larger but less densely distributed cellular lacunae in hypermineralized tissue than in lamellar bone. When examined under FIB-SEM, the hypermineralized tissue was mainly composed of mineral globules with sizes varying from submicron to a few microns. Nano-sized channels were present within the mineral globules and oriented with the surrounding organic matrix. Transmission electron microscopy showed the apatite inside globules were poorly crystalline, while those at the boundaries between the globules had well-defined lattice structure with crystallinity similar to the apatite mineral in lamellar bone. No preferred mineral orientation was observed both inside each globule and at the boundaries. Collectively, we conclude based on these new observations that the hypermineralized tissue is non-lamellar and has less organized mineral, which may contribute to the high brittleness of the tissue.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Tengteng Tang
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - David Cooper
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Pierre Guy
- Centre for Hip Health and Mobility, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|