1
|
Chen M, Takano C, Nakashima K, Gowthaman S, Kawasaki S. Exploration of ureolytic airborne bacteria for biocementation applications from different climate zones in Japan. Sci Rep 2025; 15:7536. [PMID: 40038431 PMCID: PMC11880324 DOI: 10.1038/s41598-025-92208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
The present study investigated the ureolytic airborne bacteria for microbial induced carbonate precipitation (MICP) applications, seeking resilient strains in order to address the problems of bacterial survivability and adaptability in biocementation treatment and to contribute a robust approach that can effectively stabilize diverse soils. Since the airborne bacteria tend to survive in dynamic environments, they are believed to possess remarkable adaptability in harsh conditions, thus holding great potential for engineering applications. Samplings across diverse climatic zones revealed that approximately 10-20% of the isolates were ureolytic bacteria in each sampling site. A series of characterization tests were conducted on selected strains to study the temperature dependency of urease activity. The results revealed that many of these isolates are unique in many aspects. For instance, some trains of Glutamicibacter sp. were found to precipitate extra-large calcium carbonate crystals that could be beneficial in the cementation of coarse soils. This study stands out from previous research on standard ureolytic bacteria by focusing on the exploration of airborne bacteria. The findings demonstrate that a significant number of ureolytic airborne bacteria have great potential, suggesting that the air can serve as a bacterial isolation source for MICP applications.
Collapse
Affiliation(s)
- Meiqi Chen
- Laboratory of Biotechnology for Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan.
| | - Chikara Takano
- Laboratory of Biotechnology for Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Kazunori Nakashima
- Laboratory of Biotechnology for Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Sivakumar Gowthaman
- Department of Engineering Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Satoru Kawasaki
- Laboratory of Biotechnology for Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Priyadarshanee M, Das S. Multifaceted response surface methodology unravels competitive heavy metal adsorption affinity of immobilized biosorbent formulated from bacterial extracellular polymer of Pseudomonas aeruginosa OMCS-1. CHEMOSPHERE 2024; 368:143681. [PMID: 39510264 DOI: 10.1016/j.chemosphere.2024.143681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
A multifaceted experimental design, including factorial design, Face-centered composite design (FCCD), and mixture design, was implemented to explore competitive interaction and adsorption behavior of chromium [Cr(VI)], lead [Pb(II)], and cadmium [Cd(II)] by the immobilized extracellular polymer (EPS) based biosorbent of Pseudomonas aeruginosa OMCS-1, in single and ternary metal solution. The prepared biosorbent preferentially adsorbed Cr (47.6 mg/g), Pb (46.38 mg/g), and Cd (42.02 mg/g) in single metal system, and Pb (43.32 mg/g), Cr (40.03 mg/g) and Cd (35.9 mg/g) in multiple metal system. Adsorption behavior of all metals was successfully interpreted by the Freundlich isotherm model (R2 > 0.988), confirming multilayer sequestration. The Cr, Pb, and Cd biosorption rate followed second-order kinetics (R2 > 0.997), validating chemisorption as predominant mechanism in adsorption. The alternation in the structural morphology of EPS Ca-alginate beads and Cr, Pb, and Cd accumulation, suggesting heavy metal adsorption onto immobilized biosorbent. X-ray diffraction (XRD) pattern of multi-metal loaded biosorbent showed additional crystalline phases, indicating adsorption of metal ions. The significant (p < 0.0001; one-way ANOVA) increase in the zeta potential of Cr, Pb, and Cd loaded EPS Ca-alginate beads revealed the electrostatic interaction between biosorbent and metal ions. The hydroxyl, amine, carboxyl, and phosphate groups of formulated biosorbent contributed for metal sequestration. The adsorption-desorption efficiency retained by the biosorbent after fourth cycle was 35.41 ± 0.2% and 51.44 ± 0.98% for Cr, 51.58 ± 0.15% and 63.98 ± 0.24% for Pb, and 30.68 ± 0.13% and 60.39 ± 0.46% for Cd, respectively. The EPS Ca-alginate beads can potentially eliminate heavy metals from multi-metal contaminated water.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela- 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela- 769 008, Odisha, India.
| |
Collapse
|
3
|
Wang Y, Wang Z, Ali A, Su J, Huang T, Hou C, Li X. Microbial-induced calcium precipitation: Bibliometric analysis, reaction mechanisms, mineralization types, and perspectives. CHEMOSPHERE 2024; 362:142762. [PMID: 38971440 DOI: 10.1016/j.chemosphere.2024.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Microbial-induced calcium precipitation (MICP) refers to the formation of calcium precipitates induced by mineralization during microbial metabolism. MICP has been widely used as an ecologically sustainable method in environmental, geotechnical, and construction fields. This article reviews the removal mechanisms of MICP for different contaminants in the field of water treatment. The nucleation pathway is explained at both extracellular and intracellular levels, with a focus on evaluating the contribution of extracellular polymers to MICP. The types of mineralization and the regulatory role of enzyme genes in the MICP process are innovatively summarized. Based on this, the environmental significance of MICP is illustrated, and the application prospects of calcium precipitation products are discussed. The research hotspots and development trends of MICP are analyzed by bibliometric methods, and the challenges and future directions of MICP technology are identified. This review aims to provide a theoretical basis for further understanding of the MICP phenomenon in water treatment and the effective removal of multiple pollutants, which will help researchers to find the breakthroughs and innovations in the existing technologies, with a view to making significant progress in MICP technology.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
4
|
Zou CX, Sun ZB, Wang WD, Wang T, Bo YX, Wang Z, Zheng CL. The effect of extracellular polymeric substances on MICP solidifying rare earth slags and stabilizing Th and U. World J Microbiol Biotechnol 2024; 40:232. [PMID: 38834810 DOI: 10.1007/s11274-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.
Collapse
Affiliation(s)
- Chang-Xiong Zou
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhen-Bo Sun
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Wei-da Wang
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
- Yancheng Institute of Technology, Jiangsu Province Yancheng City Hope Avenue Road 1, Yancheng, China.
| | - Tan Wang
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yan-Xin Bo
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Zhe Wang
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
- Inner Mongolia Autonomous Region, Inner Mongolia University of Science and Technology, Kundoulun District, No. 7, Alding Street, Baotou City, China.
| | - Chun-Li Zheng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| |
Collapse
|
5
|
Lyu J, Li F, Long H, Zhu X, Fu N, Guo Z, Zhang W. Bacterial templated carbonate mineralization: insights from concave-type crystals induced by Curvibacter lanceolatus strain HJ-1. RSC Adv 2024; 14:353-363. [PMID: 38173589 PMCID: PMC10758759 DOI: 10.1039/d3ra06803j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The elucidation of carbonate crystal growth mechanisms contributes to a deeper comprehension of microbial-induced carbonate precipitation processes. In this research, the Curvibacter lanceolatus HJ-1 strain, well-known for its proficiency in inducing carbonate mineralization, was employed to trigger the formation of concave-type carbonate minerals. The study meticulously tracked the temporal alterations in the culture solution and conducted comprehensive analyses of the precipitated minerals' mineralogy and morphology using advanced techniques such as X-ray diffraction, scanning electron microscopy, focused ion beam, and transmission electron microscopy. The findings unequivocally demonstrate that concave-type carbonate minerals are meticulously templated by bacterial biofilms and employ calcified bacteria as their fundamental structural components. The precise morphological evolution pathway can be delineated as follows: initiation with the formation of bacterial biofilms, followed by the aggregation of calcified bacterial clusters, ultimately leading to the emergence of concave-type minerals characterized by disc-shaped, sunflower-shaped, and spherical morphologies.
Collapse
Affiliation(s)
- Jiejie Lyu
- Department of Geography, Fuyang Normal University China
- College of Resource and Environment, Nanjing Agricultural University China
| | - Fuchun Li
- College of Resource and Environment, Nanjing Agricultural University China
| | - Haoran Long
- Department of Geography, Fuyang Normal University China
| | - Xinru Zhu
- Department of Geography, Fuyang Normal University China
| | - Nan Fu
- Department of Geography, Fuyang Normal University China
| | - Ziqi Guo
- College of Resource and Environment, Nanjing Agricultural University China
| | - Weiqing Zhang
- College of Resource and Environment, Nanjing Agricultural University China
| |
Collapse
|
6
|
Wang Z, Su J, Ali A, Gao Z, Zhang R, Li Y, Yang W. Microbially induced calcium precipitation driven by denitrification: Performance, metabolites, and molecular mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117826. [PMID: 37001427 DOI: 10.1016/j.jenvman.2023.117826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/25/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Microbially induced calcium precipitation (MICP) driven by denitrification has attracted extensive attention due to its application potential in nitrate removal from calcium-rich groundwater. However, little research has been conducted on this technique at the molecular level. Here, Pseudomonas WZ39 was used to explore the molecular mechanisms of nitrate-dependent MICP and the effects of Ca2+ on bacterial transcriptional regulation and metabolic response. The results exhibited that appropriate Ca2+ concentration (4.5 mM) can promote denitrification and the production of ATP, EPSs, and SMPs. Genome-wide analysis showed that the nitrate-dependent MICP was accomplished through heterotrophic denitrification and CO2 capture. During this process, EPS biosynthesis and Ca2+ signaling regulation were involved in the nucleation template supply and Ca2+ homeostasis balance. Untargeted transcriptome- and metabolome-association analyses revealed that the addition of Ca2+ triggered the significant up-regulation in several key pathways, such as transmembrane transporter and channel activities, amino acid metabolism, fatty acid biosynthesis, and carbon metabolism, which played a momentous role in the mineral nucleation and energy provision. The detailed information provided novel insights for understanding the active control of bacteria on MICP, and has great significance for deepening the cognition of groundwater remediation using nitrate-dependent MICP technique.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Wang X, Kong X, Liu Q, Li K, Jiang Z, Gai H, Xiao M. Effect of Clay Minerals on Carbonate Precipitation Induced by Cyanobacterium Synechococcus sp. Microbiol Spectr 2023; 11:e0036323. [PMID: 37039655 PMCID: PMC10269649 DOI: 10.1128/spectrum.00363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Carbonate precipitation induced by cyanobacteria is an important factor in lacustrine fine-grained carbonate rock genesis. As key components of these rocks, clay minerals play an important role in aggregating cyanobacteria. However, the formation mechanism of fine-grained carbonate under the effect of clay minerals is unclear. In this study, we investigated carbonate precipitation by Synechococcus cells under the influence of clay minerals. The results showed that clay minerals can accelerate Synechococcus aggregation, and the aggregation rate of the kaolinite group was significantly higher than that of montmorillonite. The aggregate size and Synechococcus cell content increased with an increase in clay minerals, resulting in increasing organic matter and carboxyl content in the aggregates. Due to the high affinity between carboxyl and Ca2+, the presence of Synechococcus sp. could improve the Mg/Ca molar ratio in the microenvironment of aggregates, which is conducive to aragonite precipitation. Thus, aragonite 5 to 10 μm in size precipitated when Synechococcus and clay minerals coexisted, whereas low-magnesium calcite (15 to 60 μm) was the main carbonate only in the presence of Synechococcus. This study provides important insights into the mechanisms of microbial-induced carbonate precipitation under the effect of clay minerals, which might offer theoretical support for the genesis of fine-grained lacustrine carbonate. IMPORTANCE The biogenesis of lacustrine fine-grained carbonates is of great significance to the exploitation of shale oil. Clay minerals are an important component of lacustrine fine-grained sedimentary rocks, which is conductive to the aggregation and settlement of cyanobacteria. We investigated the precipitation of carbonate induced by Synechococcus sp. with the addition of kaolinite and montmorillonite. The pH and calcium carbonate saturation of the environment increased under the effect of cyanobacteria photosynthesis. The aggregation of cyanobacteria cells increased the Mg/Ca molar ratio of the microenvironment, creating a favorable condition for the precipitation of aragonite, which was similar in size to the micritic calcite of fine-grained sedimentary rocks. This study provides theoretical support for the genesis of fine-grained carbonates.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiangxin Kong
- School of Energy Resources, China University of Geosciences (Beijing), Beijing, China
| | - Qian Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Kun Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zaixing Jiang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing, China
| | - Hengjun Gai
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meng Xiao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Chen M, Cao D, Li B, Pang H, Zheng C. Sodium citrate increases the aggregation capacity of calcium ions during microbial mineralization to accelerate the formation of calcium carbonate. ENVIRONMENTAL RESEARCH 2023; 224:115479. [PMID: 36796605 DOI: 10.1016/j.envres.2023.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The microbially induced carbonate precipitation (MICP) technique is widely used in soil heavy metal pollution control. Microbial mineralization involves extended mineralization times and slow crystallization rates. Thus, it is important to discover a method to accelerate mineralization. In this study, we selected six nucleating agents to screen and investigated the mineralization mechanism using polarized light microscopy, scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. The results showed that sodium citrate removed 90.1% Pb better than traditional MICP and generated the highest amount of precipitation. Interestingly, due to the addition of sodium citrate (NaCit), the rate of crystallization increased and vaterite was stabilized. Moreover, we constructed a possible model to explain that NaCit increases the aggregation capacity of calcium ions during microbial mineralization to accelerate the formation of calcium carbonate (CaCO3). Thus, sodium citrate can increase the rate of MICP bioremediation, which is important for improving MICP efficiency.
Collapse
Affiliation(s)
- Minjie Chen
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou, 014010, People's Republic of China
| | - Dan Cao
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou, 014010, People's Republic of China
| | - Bowen Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou, 014010, People's Republic of China
| | - Hao Pang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou, 014010, People's Republic of China
| | - Chunli Zheng
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou, 014010, People's Republic of China; School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 310014, People's Republic of China.
| |
Collapse
|
9
|
Min Y, Wang Z, Su J, Ali A, Huang T, Yang W. Simultaneous removal of ammonia nitrogen, recovery of phosphate, and immobilization of nickel in a polyester fiber with shell powder and iron carbon spheres bioreactor: Optimization and pathways mechanism. ENVIRONMENTAL RESEARCH 2023; 224:115476. [PMID: 36805352 DOI: 10.1016/j.envres.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Composite pollutants are prevalent in wastewater, whereas, the simultaneous accomplishment of efficient nitrogen removal and resources recovery remains a challenge. In this study, a bioreactor was constructed to contain Pseudomonas sp. Y1 using polyester fiber wrapped with shell powder and iron carbon spheres, achieving ammonia nitrogen (NH4+-N) removal, phosphate (PO43--P) recovery, and nickel (Ni2+) immobilization. The optimal performance of bioreactor was average removal efficiencies of NH4+-N, PO43--P, calcium (Ca2+), and Ni2+ as 82.42, 96.67, 76.13, and 98.29% at a hydraulic retention time (HRT) of 6 h, pH of 7.0, and influent Ca2+ and Ni2+ concentrations of 100.0 and 3.0 mg L-1, respectively. The bioreactor could remove PO43--P, Ca2+, and Ni2+ by biomineralization, co-precipitation, adsorption, and lattice substitution. Moreover, microbial community analysis suggested that Pseudomonas was the predominant genus and had possessed tolerance to Ni2+ toxicity in wastewater. This study presented an effective method to synchronously remove NH4+-N, recover PO43--P, and fix heavy metals through microbially induced carbonate precipitation (MICP) and heterotrophic nitrification and aerobic denitrification (HNAD) technology.
Collapse
Affiliation(s)
- Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Hu XM, Liu JD, Feng Y, Zhao YY, Wang XW, Liu WH, Zhang M, Liu Y. Application of urease-producing microbial community in seawater to dust suppression in desert. ENVIRONMENTAL RESEARCH 2023; 219:115121. [PMID: 36549485 DOI: 10.1016/j.envres.2022.115121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
In order to solve the dust problem caused by sandstorms, this paper aims to propose a new method of enriching urease-producing microbial communities in seawater in a non-sterile environment. Besides, the difference of dust suppression performance of enriched microorganisms under different pH conditions was also explored to adapt the dust. The Fourier-transform infrared spectrometry (FTIR) and Scanning electron microscopy (SEM) confirmed the formation of CaCO3. The X-ray diffraction (XRD) further showed that the crystal forms of CaCO3 were calcite and vaterite. When urease activity was equivalent, the alkaline environment was conducive to the transformation of CaCO3 to more stable calcite. The mineralization rate at pH = 10 reached the maximum value on the 7th day, which was 97.49 ± 1.73%. Moreover, microbial community analysis results showed that the relative abundance of microbial community structure was different under different pH enrichment. Besides, the relative abundance of Sporosarcina, a representative genus of urease-producing microbial community, increased with the increase of pH under culture conditions, which consistent with the mineralization performance results. In addition, the genus level species network diagram also showed that in the microbial community, Sporosarcina was negatively correlated with another urease-producing genus Bacillus, and had a reciprocal relationship with Atopostipes, which means that the urease-producing microbial community was structurally stable. The enrichment of urease-producing microbial communities in seawater will provide empirical support for the large-scale engineering application of MICP technology in preventing and controlling sandstorms in deserts.
Collapse
Affiliation(s)
- Xiang-Ming Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Jin-Di Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yue Feng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yan-Yun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Xu-Wei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Wen-Hao Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Ming Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yu Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| |
Collapse
|
11
|
Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World J Microbiol Biotechnol 2023; 39:61. [PMID: 36576609 PMCID: PMC9797461 DOI: 10.1007/s11274-022-03499-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Microbiologically induced calcium carbonate precipitation (MICP) is a technique that has received a lot of attention in the field of geotechnology in the last decade. It has the potential to provide a sustainable and ecological alternative to conventional consolidation of minerals, for example by the use of cement. From a variety of microbiological metabolic pathways that can induce calcium carbonate (CaCO3) precipitation, ureolysis has been established as the most commonly used method. To better understand the mechanisms of MICP and to develop new processes and optimize existing ones based on this understanding, ureolytic MICP is the subject of intensive research. The interplay of biological and civil engineering aspects shows how interdisciplinary research needs to be to advance the potential of this technology. This paper describes and critically discusses, based on current literature, the key influencing factors involved in the cementation of sand by ureolytic MICP. Due to the complexity of MICP, these factors often influence each other, making it essential for researchers from all disciplines to be aware of these factors and its interactions. Furthermore, this paper discusses the opportunities and challenges for future research in this area to provide impetus for studies that can further advance the understanding of MICP.
Collapse
|
12
|
Feng Z, Li X, Shao X, Wang L. Preferred injection method and curing mechanism analysis for the curing of loose Pisha sandstone based on microbially induced calcite precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12005-12019. [PMID: 36103070 DOI: 10.1007/s11356-022-22742-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
As a loose rock formation with low lithogenic property, low structural strength, and poor intersand cementation, Pisha sandstone is susceptible to chemical weathering and extreme soil erosion and has become an important source of sediment for the Yellow River. There is limited information available on the conditions of microbial distribution homogeneity under grain-mediated conditions in Pisha sandstones, as well as on the influence of dissolved minerals on calcium carbonate morphological mechanisms. In this paper, microbially induced calcium carbonate deposition was used to reinforce and improve the loose Pisha sandstone. First, the influence laws of the single-phase/self-absorption two-phase injection method and added solvent on the curing indexes such as curing volume, curing depth, calcium carbonate yield, and unconfined compressive strength of the specimens were discussed. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction spectroscopy were used to analyze the microstructure of the cemented sand columns, as well as the mineral phases and distribution of the biomineralization products mechanistically. The results demonstrated that the single-phase injection treatment could only achieve local solidification of the Pisha sandstone sand column, whereas the self-absorption two-phase injection method could result in a more uniform spatial distribution of bacteria and a monolithic specimen, in which the calcium carbonate yield increased with increasing low concentration CaCl2 injection. The compressive strength appeared to increase significantly, and the effect of the applied liquid CO(NH2)2 was not obvious. Montmorillonite underwent dissolution during the mineralization process, eliminating the characteristics of Pisha sandstone swelling in water. Under the effect of biomineralization, calcium carbonate crystals are formed to wrap around the Pisha sandstone particles, changing their particle size and increasing the interparticle roughness. Meanwhile, the interstices between particles are filled via calcium carbonate precipitation, effectively forming cementation points that can significantly improve the strength of the Pisha sandstone. The results of this study provide a theoretical basis for the application of biomineralization technology in the ecological restoration of Pisha sandstone areas.
Collapse
Affiliation(s)
- Zhuojun Feng
- College of Water Resources and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Xiaoli Li
- College of Water Resources and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| | - Xinhang Shao
- College of Water Resources and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Liming Wang
- College of Water Resources and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| |
Collapse
|
13
|
Wang Z, Su J, Zhang R, Li K, Hu R, Liu Y, Zhang L, Li J. Enhanced nitrate, fluoride, and phenol removal using polyurethane sponges loaded with rice husk biochar in immobilized bioreactor. BIORESOURCE TECHNOLOGY 2022; 364:128098. [PMID: 36241068 DOI: 10.1016/j.biortech.2022.128098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Polyurethane sponges loaded with rice husk biochar were prepared to immobilize Aquabacterium sp. CZ3 for intensified removal of nitrate, fluoride (F-), and phenol, with the maximum efficiency of 100 %, 91 %, and 99 %, respectively. The biochar load and increased carbon-to-nitrogen (C:N) ratio (below 3.0) stimulated the secretion of soluble microbial product, improved the electron transport system activity, and promoted denitrification, phenol co-metabolism, and F- and calcium crystallization. The characterization results suggested that F- was removed as fluoride-containing calcium precipitates. According to the microbial community analyses, Aquabacterium was the dominant bacterium. PICRUSt analyses showed that biochar and adequate carbon sources (C:N ratio 3.0) significantly increased the functional abundances of amino acid metabolism, carbohydrate metabolism, energy metabolism, and cell motility. The introduction of biochar reduces the demand for C:N ratio in the system, and expands the application potential of biomineralization technique in the remediation of multiple pollutants contaminated water.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruizhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
14
|
Wang Z, Su J, Ali A, Sun Y, Li Y, Yang W, Zhang R. Enhanced removal of fluoride, nitrate, and calcium using self-assembled fungus-flexible fiber composite microspheres combined with microbially induced calcium precipitation. CHEMOSPHERE 2022; 302:134848. [PMID: 35526689 DOI: 10.1016/j.chemosphere.2022.134848] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Self-assembled fungus-flexible fiber composite microspheres (SFFMs) were firstly combined with microbially induced calcium precipitation (MICP) in a continuous-flow bioreactor and achieved the efficient removal of fluoride (F-), nitrate (NO3-), and calcium (Ca2+). Under the influent F- of 3.0 mg L-1, pH of 7.0, and HRT of 8 h, the average removal efficiencies reached 77.54%, 99.39%, and 67.25% (0.29, 2.03, and 8.34 mg L-1 h-1), respectively. Fluorescence spectrum and flow cytometry analyses indicated that F- content significantly affected the metabolism and viability of bacteria. SEM images showed that flexible fibers and intertwined hyphae provided effective locations for bacterial colonization in SFFMs. The precipitated products were characterized by XRD and FTIR, which revealed that F- was mainly removed in the form of calcium fluoride and calcium fluorophosphate (CaF2 and Ca5(PO4)3F). High-throughput analysis at different levels demonstrated that Pseudomonas sp. WZ39 acted as the core strain, which played a crucial role in the bioreactor. The mechanism of enhanced denitrification was attributed to minor F- stress and bioaugmentation technology. This study highlighted the superiorities of SFFMs and MICP combined remediation and documented a promising option for F-, NO3-, and Ca2+ removal.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Wang Z, Su J, Ali A, Yang W, Zhang R, Li Y, Zhang L, Li J. Chitosan and carboxymethyl chitosan mimic biomineralization and promote microbially induced calcium precipitation. Carbohydr Polym 2022; 287:119335. [DOI: 10.1016/j.carbpol.2022.119335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
|
16
|
Liu W, Zhao Y, Hu X, Li X, Geng Z, Wang Q, Liu J, Wang H, You G. High performance of coal dust suppression with waste activated sludge using microbially induced calcite precipitation technology. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zhang R, Ali A, Su J, Liu J, Wang Z, Li J, Liu Y. Synergistic removal of fluoride, calcium, and nitrate in a biofilm reactor based on anaerobic microbially induced calcium precipitation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128102. [PMID: 35030488 DOI: 10.1016/j.jhazmat.2021.128102] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Fluoride (F-) and calcium (Ca2+) are primary causes of skeleton fluorosis and scaling, posing a grievous threat to aquatic lives and public health. Therefore, a novel strategy for polluted groundwater in immobilized biofilm reactor based on the anaerobic microbial induced calcium precipitation (MICP) was proposed, in which loofah was used as a multifunctional strain Cupriavidus sp. W12 growth carrier. Effects of different hydraulic retention time (HRT), initial F-concentration, and pH on the synchronous removal of pollutants were examined. Under stable operation conditions, the highest efficiencies for Ca2+, F-, and nitrate (NO3--N) reached 76.73%, 94.92%, and 100%, respectively. Furthermore, gas chromatography (GC), Fluorescence excitation-emission matrix (EEM), X-ray diffraction (XRD), Scanning electron microscope-energy dispersive spectroscope (SEM-EDS), and Fourier transform infrared spectrometer (FTIR) comprehensively clarified the mechanism of pollutants removal. The results elucidated that the removal of various pollutants was achieved through a combination of anaerobic MICP, adsorption, and co-precipitation. Besides, high-throughput sequencing analysis showed that Cupriavidus had a predominant proportion of 42.36% in the reactor and had stability against pH impact. As the first application of a biofilm reactor based on anaerobic MICP, it put forward a new insight for efficient defluorination and decalcification.
Collapse
Affiliation(s)
- Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Shi J, Gao Z. Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150341. [PMID: 34563912 DOI: 10.1016/j.scitotenv.2021.150341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A new hypothesis that seed crystals (SC) and bacteria based on microbially induced calcium precipitation (MICP) synergistically remove fluoride (F-) from groundwater was proposed, with a focus on evaluating the defluoridation potential of this method and revealing its F- removal mechanism. The crucial conditions were optimized to reduce preparation and operation costs. SC furnished more available binding sites due to the existence of bacteria, and the reuse experiments showed that the defluoridation efficiency of SC still remained a high level after 14 cycles (70.10%), with a residual F- concentration of 0.96 mg L-1. The SEM-EDS, FTIR and XRD analyses indicated the predominant F- removal mechanism of SC could be ascribed to the chemisorption, ion exchange, and co-precipitation. Moreover, ion exchange and co-precipitation (PO43- involvement) were validated more contributive than chemisorption (CaCO3 and CaSO4 involvement). As a feasible, reusable, and eco-friendly technique, SC suggests promising applications in the treatment of fluoride-contaminated groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
Zeng Y, Chen Z, Du Y, Lyu Q, Yang Z, Liu Y, Yan Z. Microbiologically induced calcite precipitation technology for mineralizing lead and cadmium in landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113199. [PMID: 34271357 DOI: 10.1016/j.jenvman.2021.113199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
As a new bioremediation technology for toxic metals, microbiologically induced calcite precipitation (MICP) is gradually becoming a research focus. This study investigated the application of MICP to mineralize toxic metals (lead and cadmium) in landfill leachate for the first time. In the experiment of remediating synthetic landfill leachate (SLL) contaminated by Pb2+, 100% of the 20 mg/L Pb2+ was removed when the maximum urease activity was only 20.96 U/ml. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) and laser particle size characterizations of the precipitates indicate the formation of agglomerated square particles, 76.9% of which had sizes that ranged from 33.93 to 57.06 μm. Fourier transform infrared spectroscopic and X-ray diffraction analyses confirmed that the precipitates consisted predominantly of calcite crystals, and the unit cell lattice constants of the precipitates (a = b = 4.984 Å, c = 17.171 Å) matched those of calcite, while lead was fixed as hydrocerussite. In addition, the Pb-MICP precipitates were stable under continuous acid degradation (pH = 5.5), and only 1.76% of the lead was released after 15 days. In the verification test of toxic metals remediation in a real landfill leachate (RLL), all of the Pb2+ and Cd2+ (initial concentrations: Pb2+ = 25 mg/L; Cd2+ = 5.6205 mg/L) was mineralized simultaneously, which further confirmed the feasibility of MICP for toxic metal remediation in landfill leachate. However, optimizing the urea dosage and combining the ammonium recovery are necessary strategies required for improving the economic and environmental benefits of the MICP process.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Yaling Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Ziyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
20
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Zhao T. Microbially induced calcium precipitation based simultaneous removal of fluoride, nitrate, and calcium by Pseudomonas sp. WZ39: Mechanisms and nucleation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125914. [PMID: 34492848 DOI: 10.1016/j.jhazmat.2021.125914] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A simultaneous denitrifying and mineralizing bacterium, Pseudomonas sp. WZ39 was isolated for fluoride (F-), nitrate (NO3--N), and calcium (Ca2+) removal. Strain WZ39 exhibited a remarkable defluoridation efficiency of 87.49% under a pH of 6.90, F- and Ca2+ concentration of 1.99 and 201.88 mg L-1, respectively. EEM, SEM-EDS, XRD, and FTIR analyses elucidated the chemical adsorption and co-precipitation with calcium salt contributed to the removal of F-. The mechanisms of biomineralization were also investigated by determining the role of bound and unbound extracellular polymeric substances (EPS), cell wall, and calcium channel in nucleation. The results showed that bacteria can promote nucleation on the templates of cell walls or EPS through the electrostatic effect. The presence of the calcium channel blocker inhibited the transport of intracellular Ca2+ to the extracellular environment. The outcome of the present research can provide a theoretical basis for the understanding of MICP phenomenon and the efficient treatment of F- containing groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tingbao Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Zhao Y, Han Z, Yan H, Zhao H, Tucker ME, Gao X, Guo N, Meng R, Owusu DC. Selective Adsorption of Amino Acids in Crystals of Monohydrocalcite Induced by the Facultative Anaerobic Enterobacter ludwigii SYB1. Front Microbiol 2021; 12:696557. [PMID: 34394038 PMCID: PMC8358455 DOI: 10.3389/fmicb.2021.696557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
The morphology, crystal structure, and elemental composition of biominerals are commonly different from chemically synthesized minerals, but the reasons for these are not fully understood. A facultative anaerobic bacterium, Enterobacter ludwigii SYB1, is used in experiments to document the hydrochemistry, mineral crystallization, and cell surface characteristics of biomineralization. It was found that carbonate anhydrase and ammonia production were major factors influencing the alkalinity and saturation of the closed biosystem. X-ray diffraction (XRD) spectra showed that calcite, monohydrocalcite (MHC), and dypingite formed in samples with bacterial cells. It was also found that the (222) plane of MHC was the preferred orientation compared to standard data. Scanning transmission electron microscopy (STEM) analysis of cell slices provides direct evidence of concentrated calcium and magnesium ions on the surface of extracellular polymeric substances (EPS). In addition, high-resolution transmission electron microscopy (HRTEM) showed that crystallized nanoparticles were formed within the EPS. Thus, the mechanism of the biomineralization induced by E. ludwigii SYB1 can be divided into three stages: (i) the production of carbonate anhydrase and ammonia increases the alkalinity and saturation state of the milieu, (ii) free calcium and magnesium ions are adsorbed and chelated onto EPS, and (iii) nanominerals crystallize and grow within the EPS. Seventeen kinds of amino acids were identified within both biotic MHC and the EPS of SYB1, while the percentages of glutamic and aspartic acid in MHC increased significantly (p < 0.05). Furthermore, the adsorption energy was calculated for various amino acids on seven diffracted crystal faces, with preferential adsorption demonstrated on (111) and (222) faces. At the same time, the lowest adsorption energy was always that of glutamic and aspartic acid for the same crystal plane. These results suggest that aspartic and glutamic acid always mix preferentially in the crystal lattice of MHC and that differential adsorption of amino acids on crystal planes can lead to their preferred orientation. Moreover, the mixing of amino acids in the mineral structure may also have a certain influence on the mineral lattice dislocations, thus enhancing the thermodynamic characteristics.
Collapse
Affiliation(s)
- Yanyang Zhao
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China.,Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zuozhen Han
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China.,Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huaxiao Yan
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Hui Zhao
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom.,Cabot Institute, University of Bristol, Bristol, United Kingdom
| | - Xiao Gao
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Na Guo
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Ruirui Meng
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Daniel Cosmos Owusu
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Shan B, Hao R, Xu H, Li J, Li Y, Xu X, Zhang J. A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30486-30498. [PMID: 33900555 DOI: 10.1007/s11356-021-14045-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a toxic metal originating from natural processes and anthropogenic activities such as coal power plants, mining, waste gas fuel, leather whipping, paint, and battery factories, which has adverse effects on the ecosystem and the health of human beings. Hence, the studies about investigating the remediation of Pb pollution have aroused extensive attention. Microbial remediation has the advantages of lower cost, higher efficiency, and less impact on the environment. This paper represented a review on the mechanism of biomineralization using microbial-induced precipitation for immobilizing Pb(II), including microbial-induced carbonate precipitation (MICP), microbial-induced phosphate precipitation (MIPP), and direct mineralization. The main mechanisms including biosorption, bioaccumulation, complexation, and biomineralization could decrease Pb(II) concentrations and convert exchangeable state into less toxic residual state. We also discuss the factors that govern methods for the bioremediation of Pb such as microbe characteristics, pH, temperature, and humic substances. Based on the above reviews, we provide a scientific basis for the remediation performance of microbial-induced precipitation technique and theoretical guidance for the application of Pb(II) remediation in soils and wastewater.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yinhuang Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Xiyang Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|