1
|
Wiechers H, Williams CJ, Eltzner B, Hoppe F, Prisant MG, Chen VB, Miller E, Mardia KV, Richardson JS, Huckemann SF. RNAprecis: Prediction of full-detail RNA conformation from the experimentally best-observed sparse parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636803. [PMID: 39975038 PMCID: PMC11839040 DOI: 10.1101/2025.02.06.636803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We address the problem of predicting high detail RNA structure geometry from the information available in low resolution experimental maps of electron density. Here low resolution refers to ≥2.5Å where the location of the phosphate groups and the glyocosidic bonds can be determined from electron density but all other backbone atom positions cannot. In contrast, high resolution determines all backbone atomic positions. To this end, we firstly create a gold standard data base for four groups of manually corrected suites, each reflecting one out of four sugar pucker-pair configurations. Secondly we develop and employ a modified version of the previously devised algorithm MINT-AGE to learn clusters that are in high correspondence with gold standard's conformational classes based on 3D RNA structure. Since some of the manually corrected classes are of very small size, the modified version of MINT-AGE is able to also identify very small clusters. Thirdly, the new algorithm RNAprecis assigns low resolution structures to newly designed 3D shape coordinates. Our improvements include: (i) learned classes augmented to cover also very low sample sizes and (ii) regularizing a key distance by introducing an adaptive Mahalanobis distance. On a test data containing many clashing and suites modeled as conformational outliers, RNA precis shows good results suggesting that our learning method generalizes well. In particular, our modified MINT-AGE clustering can be finer than the existing curated gold standard suite conformers. For example, the 0a conformer has been separated into two clusters seen in different structural contexts. Such new distinctions can have implications for biochemical interpretation of RNA structure.
Collapse
|
2
|
Ma Z, Zou B, Zhao J, Zhang R, Zhu Q, Wang X, Xu L, Gao X, Hu X, Feng W, Luo W, Wang M, He Y, Yu Z, Cui W, Zhang Q, Kuai L, Su W. Development of a DNA-encoded library screening method "DEL Zipper" to empower the study of RNA-targeted chemical matter. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100204. [PMID: 39716586 DOI: 10.1016/j.slasd.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
To date, RNA-targeted chemical matter is under explored due to a lack of robust screening assays. In this study, we present a novel RNA-targeted small molecule screening approach using a specialized DNA-encoded library (DEL). Our findings reveal that the specialized DEL library, called "DEL Zipper", can significantly reduce single-stranded DNA-RNA region interaction signals during various kinds of RNA selection. By performing the selection against both G-quadruplex, we have identified novel hits that interact with RNA targets and the results are validated through binding. This study demonstrates that the "DEL Zipper" method is a robust screening assay that has potential for discovering small molecule ligands for diverse RNA targets.
Collapse
Affiliation(s)
- Zhongyao Ma
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Bin Zou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jiannan Zhao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qiaoqiao Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaofeng Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Linan Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiang Gao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xinyue Hu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wei Feng
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wen Luo
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Min Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yunyun He
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhifeng Yu
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, MA 02142, United States
| | - Weiren Cui
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, MA 02142, United States.
| | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| |
Collapse
|
3
|
Stagno J, Deme J, Dwivedi V, Lee YT, Lee HK, Yu P, Chen SY, Fan L, Degenhardt MS, Chari R, Young H, Lea S, Wang YX. Structural investigation of an RNA device that regulates PD-1 expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf156. [PMID: 40071935 PMCID: PMC11897892 DOI: 10.1093/nar/gkaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Synthetic RNA devices are engineered to control gene expression and offer great potential in both biotechnology and clinical applications. Here, we present multidisciplinary structural and biochemical data for a tetracycline (Tc)-responsive RNA device (D43) in both ligand-free and bound states, providing a structure-dynamical basis for signal transmission. Activation of self-cleavage is achieved via ligand-induced conformational and dynamical changes that stabilize the elongated bridging helix harboring the communication module, which drives proper coordination of the catalytic residues. We then show the utility of CRISPR-integrated D43 in EL4 lymphocytes to regulate programmed cell death protein 1 (PD-1), a key receptor of immune checkpoints. Treatment of these cells with Tc showed a dose-dependent reduction in PD-1 by immunostaining and a decrease in messenger RNA levels by quantitative PCR as compared with wild type. PD-1 expression was recoverable upon removal of Tc. These results provide mechanistic insight into RNA devices with potential for cancer immunotherapy or other applications.
Collapse
Affiliation(s)
- Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Vibha Dwivedi
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Szu-Yun Chen
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD, 21702, United States
| | - Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Howard A Young
- Cellular and Molecular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
4
|
Stagno JR, Wang YX. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Int J Mol Sci 2024; 25:10682. [PMID: 39409011 PMCID: PMC11477058 DOI: 10.3390/ijms251910682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices. Generally speaking, a riboswitch consists of a ligand-sensing aptamer domain and an expression platform, whose genetic control is achieved through the formation of mutually exclusive secondary structures in a ligand-dependent manner. For most riboswitches, this involves formation of the aptamer's P1 helix and the regulation of its stability, whose competing structure turns gene expression ON/OFF at the level of transcription or translation. Structural knowledge of the conformational changes involving the P1 regulatory helix, therefore, is essential in understanding the structural basis for ligand-induced conformational switching. This review provides a summary of riboswitch cases for which ligand-free and ligand-bound structures have been determined. Comparative analyses of these structures illustrate the uniqueness of these riboswitches, not only in ligand sensing but also in the various structural mechanisms used to achieve the same end of regulating switch helix stability. In all cases, the ligand stabilizes the P1 helix primarily through coaxial stacking interactions that promote helical continuity.
Collapse
Affiliation(s)
- Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | | |
Collapse
|
5
|
Singh K, Reddy G. Excited States of apo-Guanidine-III Riboswitch Contribute to Guanidinium Binding through Both Conformational and Induced-Fit Mechanisms. J Chem Theory Comput 2024; 20:421-435. [PMID: 38134376 DOI: 10.1021/acs.jctc.3c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.
Collapse
Affiliation(s)
- Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| |
Collapse
|
6
|
Ding J, Deme J, Stagno JR, Yu P, Lea S, Wang YX. Capturing heterogeneous conformers of cobalamin riboswitch by cryo-EM. Nucleic Acids Res 2023; 51:9952-9960. [PMID: 37534568 PMCID: PMC10570017 DOI: 10.1093/nar/gkad651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
RNA conformational heterogeneity often hampers its high-resolution structure determination, especially for large and flexible RNAs devoid of stabilizing proteins or ligands. The adenosylcobalamin riboswitch exhibits heterogeneous conformations under 1 mM Mg2+ concentration and ligand binding reduces conformational flexibility. Among all conformers, we determined one apo (5.3 Å) and four holo cryo-electron microscopy structures (overall 3.0-3.5 Å, binding pocket 2.9-3.2 Å). The holo dimers exhibit global motions of helical twisting and bending around the dimer interface. A backbone comparison of the apo and holo states reveals a large structural difference in the P6 extension position. The central strand of the binding pocket, junction 6/3, changes from an 'S'- to a 'U'-shaped conformation to accommodate ligand. Furthermore, the binding pocket can partially form under 1 mM Mg2+ and fully form under 10 mM Mg2+ within the bound-like structure in the absence of ligand. Our results not only demonstrate the stabilizing ligand-induced conformational changes in and around the binding pocket but may also provide further insight into the role of the P6 extension in ligand binding and selectivity.
Collapse
Affiliation(s)
- Jienyu Ding
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Lee HK, Lee YT, Fan L, Wilt HM, Conrad CE, Yu P, Zhang J, Shi G, Ji X, Wang YX, Stagno JR. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state. Structure 2023; 31:848-859.e3. [PMID: 37253356 PMCID: PMC10335363 DOI: 10.1016/j.str.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The thiamine pyrophosphate (TPP)-sensing riboswitch is one of the earliest discovered and most widespread riboswitches. Numerous structural studies have been reported for this riboswitch bound with various ligands. However, the ligand-free (apo) structure remains unknown. Here, we report a 3.1 Å resolution crystal structure of Escherichia coli TPP riboswitch in the apo state, which exhibits an extended, Y-shaped conformation further supported by small-angle X-ray scattering data and driven molecular dynamics simulations. The loss of ligand interactions results in helical uncoiling of P5 and disruption of the key tertiary interaction between the sensory domains. Opening of the aptamer propagates to the gene-regulatory P1 helix and generates the key conformational flexibility needed for the switching behavior. Much of the ligand-binding site at the three-way junction is unaltered, thereby maintaining a partially preformed pocket. Together, these results paint a dynamic picture of the ligand-induced conformational changes in TPP riboswitches that confer conditional gene regulation.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD 21702, USA
| | - Haley M Wilt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chelsie E Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Genbin Shi
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xinhua Ji
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Xu L, Xiao Y, Zhang J, Fang X. Structural insights into translation regulation by the THF-II riboswitch. Nucleic Acids Res 2023; 51:952-965. [PMID: 36620887 PMCID: PMC9881143 DOI: 10.1093/nar/gkac1257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
In bacteria, expression of folate-related genes is controlled by the tetrahydrofolate (THF) riboswitch in response to specific binding of THF and its derivatives. Recently, a second class of THF riboswitches, named THF-II, was identified in Gram-negative bacteria, which exhibit distinct architecture from the previously characterized THF-I riboswitches found in Gram-positive bacteria. Here, we present the crystal structures of the ligand-bound THF-II riboswitch from Mesorhizobium loti. These structures exhibit a long rod-like fold stabilized by continuous base pair and base triplet stacking across two helices of P1 and P2 and their interconnecting ligand-bound binding pocket. The pterin moiety of the ligand docks into the binding pocket by forming hydrogen bonds with two highly conserved pyrimidines in J12 and J21, which resembles the hydrogen-bonding pattern at the ligand-binding site FAPK in the THF-I riboswitch. Using small-angle X-ray scattering and isothermal titration calorimetry, we further characterized the riboswitch in solution and reveal that Mg2+ is essential for pre-organization of the binding pocket for efficient ligand binding. RNase H cleavage assay indicates that ligand binding reduces accessibility of the ribosome binding site in the right arm of P1, thus down-regulating the expression of downstream genes. Together, these results provide mechanistic insights into translation regulation by the THF-II riboswitch.
Collapse
Affiliation(s)
| | | | - Jie Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
9
|
Yan S, Ilgu M, Nilsen-Hamilton M, Lamm MH. Computational Modeling of RNA Aptamers: Structure Prediction of the Apo State. J Phys Chem B 2022; 126:7114-7125. [PMID: 36097649 PMCID: PMC9512008 DOI: 10.1021/acs.jpcb.2c04649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Indexed: 11/28/2022]
Abstract
RNA aptamers are single-stranded oligonucleotides that bind to specific molecular targets with high affinity and specificity. To design aptamers for new applications, it is critical to understand the ligand binding mechanism in terms of the structure and dynamics of the ligand-bound and apo states. The problem is that most of the NMR or X-ray crystal structures available for RNA aptamers are for ligand-bound states. Available apo state structures, mostly characterized by crystallization under nonphysiological conditions or probed by low resolution techniques, might fail to represent the diverse structural variations of the apo state in solution. Here, we develop an approach to obtain a representative ensemble of apo structures that are based on in silico RNA 3D structure prediction and in vitro experiments that characterize base stacking. Using the neomycin-B aptamer as a case study, an ensemble of structures for the aptamer in the apo (unbound) state are validated and then used to investigate the ligand-binding mechanism for the aptamer in complex with neomycin-B.
Collapse
Affiliation(s)
- Shuting Yan
- Iowa
State University, Ames, Iowa 50011, United States
| | - Muslum Ilgu
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | - Marit Nilsen-Hamilton
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | | |
Collapse
|
10
|
Kognole AA, Hazel A, MacKerell AD. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules. J Chem Theory Comput 2022; 18:5672-5691. [PMID: 35913731 PMCID: PMC9474704 DOI: 10.1021/acs.jctc.2c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA molecules can act as potential drug targets in different diseases, as their dysregulated expression or misfolding can alter various cellular processes. Noncoding RNAs account for ∼70% of the human genome, and these molecules can have complex tertiary structures that present a great opportunity for targeting by small molecules. In the present study, the site identification by ligand competitive saturation (SILCS) computational approach is extended to target RNA, termed SILCS-RNA. Extensions to the method include an enhanced oscillating excess chemical potential protocol for the grand canonical Monte Carlo calculations and individual simulations of the neutral and charged solutes from which the SILCS functional group affinity maps (FragMaps) are calculated for subsequent binding site identification and docking calculations. The method is developed and evaluated against seven RNA targets and their reported small molecule ligands. SILCS-RNA provides a detailed characterization of the functional group affinity pattern in the small molecule binding sites, recapitulating the types of functional groups present in the ligands. The developed method is also shown to be useful for identification of new potential binding sites and identifying ligand moieties that contribute to binding, granular information that can facilitate ligand design. However, limitations in the method are evident including the ability to map the regions of binding sites occupied by ligand phosphate moieties and to fully account for the wide range of conformational heterogeneity in RNA associated with binding of different small molecules, emphasizing inherent challenges associated with applying computer-aided drug design methods to RNA. While limitations are present, the current study indicates how the SILCS-RNA approach may enhance drug discovery efforts targeting RNAs with small molecules.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
11
|
Lee HK, Conrad CE, Magidson V, Heinz WF, Pauly G, Yu P, Ramakrishnan S, Stagno JR, Wang YX. Developing methods to study conformational changes in RNA crystals using a photocaged ligand. Front Mol Biosci 2022; 9:964595. [PMID: 36052167 PMCID: PMC9424638 DOI: 10.3389/fmolb.2022.964595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Crystallographic observation of structural changes in real time requires that those changes be uniform both spatially and temporally. A primary challenge with time-resolved ligand-mixing diffraction experiments is asynchrony caused by variable factors, such as efficiency of mixing, rate of diffusion, crystal size, and subsequently, conformational heterogeneity. One method of minimizing such variability is use of a photolabile caged ligand, which can fully saturate the crystal environment (spatially), and whose photoactivation can rapidly (temporally) trigger the reaction in a controlled manner. Our recently published results on a ligand-mixing experiment using time-resolved X-ray crystallography (TRX) with an X-ray free electron laser (XFEL) demonstrated that large conformational changes upon ligand binding resulted in a solid-to-solid phase transition (SSPT), while maintaining Bragg diffraction. Here we investigate this SSPT by polarized video microscopy (PVM) after light-triggered release of a photo-caged adenine (pcADE). In general, the mean transition times and transition widths of the SSPT were less dependent on crystal size than what was observed in previous PVM studies with direct ADE mixing. Instead, the photo-induced transition appears to be heavily influenced by the equilibrium between caged and uncaged ADE due to relatively low sample exposure and uncaging efficiency. Nevertheless, we successfully demonstrate a method for the characterization of phase transitions in RNA crystals that are inducible with a photocaged ligand. The transition data for three crystals of different sizes were then applied to kinetic analysis by fitting to the known four-state model associated with ligand-induced conformational changes, revealing an apparent concentration of uncaged ADE in crystal of 0.43–0.46 mM. These results provide further insight into approaches to study time-resolved ligand-induced conformational changes in crystals, and in particular, highlight the feasibility of triggering phase transitions using a light-inducible system. Developing such approaches may be paramount for the rapidly emerging field of time-resolved crystallography.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Chelsie E. Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Saminathan Ramakrishnan
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jason R. Stagno, ; Yun-Xing Wang,
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jason R. Stagno, ; Yun-Xing Wang,
| |
Collapse
|