1
|
Abstract
Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future research.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
2
|
Zhang L, Zhang X, Zhang X, Lu Y, Li L, Cui S. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J Endocrinol 2017; 234:1-14. [PMID: 28649090 DOI: 10.1530/joe-16-0488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
MicroRNAs (MiRNAs) play important regulatory roles in many cellular processes. MiR-143 is highly enriched in the mouse ovary, but its roles and underlying mechanisms are not well understood. In the current study, we show that miR-143 is located in granulosa cells of primary, secondary and antral follicles. To explore the specific functions of miR-143, we transfected miR-143 inhibitor into primary cultured granulosa cells to study the loss of function of miR-143 and the results showed that miR-143 silencing significantly increased estradiol production and steroidogenesis-related gene expression. Moreover, our in vivo and in vitro studies showed that follicular stimulating hormone (FSH) significantly decreased miR-143 expression. This function of miR-143 is accomplished by its binding to the 3'-UTR of KRAS mRNA. Furthermore, our results demonstrated that miR-143 acts as a negative regulating molecule mediating the signaling pathway of FSH and affecting estradiol production by targeting KRAS. MiR-143 also negatively acts in regulating granulosa cells proliferation and cell cycle-related genes expression. These findings indicate that miR-143 plays vital roles in FSH-induced estradiol production and granulosa cell proliferation, providing a novel mechanism that involves miRNA in regulating granulosa cell functions.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| | - XiaoXin Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuejing Zhang
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| | - Yu Lu
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| |
Collapse
|
3
|
Onori P, Mancinelli R, Franchitto A, Carpino G, Renzi A, Brozzetti S, Venter J, Francis H, Glaser S, Jefferson DM, Alpini G, Gaudio E. Role of follicle-stimulating hormone on biliary cyst growth in autosomal dominant polycystic kidney disease. Liver Int 2013; 33:914-25. [PMID: 23617956 PMCID: PMC4064944 DOI: 10.1111/liv.12177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 03/11/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the progressive development of renal and hepatic cysts. Follicle-stimulating hormone (FSH) has been demonstrated to be a trophic factor for biliary cells in normal rats and experimental cholestasis induced by bile duct ligation (BDL). AIMS To assess the effect of FSH on cholangiocyte proliferation during ADPKD using both in vivo and in vitro models. METHODS Evaluation of FSH receptor (FSHR), FSH, phospho-extracellular-regulated kinase (pERK) and c-myc expression in liver fragments from normal patients and patients with ADPKD. In vitro, we studied proliferating cell nuclear antigen (PCNA) and cAMP levels in a human immortalized, non-malignant cholangiocyte cell line (H69) and in an immortalized cell line obtained from the epithelium lining the hepatic cysts from the patients with ADPKD (LCDE) with or without transient silencing of the FSH gene. RESULTS Follicle-stimulating hormone is linked to the active proliferation of the cystic wall and to the localization of p-ERK and c-myc. This hormone sustains the biliary growth by activation of the cAMP/ERK signalling pathway. CONCLUSION These results showed that FSH has an important function in cystic growth acting on the cAMP pathway, demonstrating that it provides a target for medical therapy of hepatic cysts during ADPKD.
Collapse
Affiliation(s)
- Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy,Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome ‘Foro Italico’, Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Stefania Brozzetti
- Department of Surgical Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Julie Venter
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Heather Francis
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Shannon Glaser
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | | | - Gianfranco Alpini
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| |
Collapse
|
4
|
Hobbs RJ, Howard J, Wildt DE, Comizzoli P. Absence of seasonal changes in FSHR gene expression in the cat cumulus-oocyte complex in vivo and in vitro. Reproduction 2012; 144:111-22. [PMID: 22596062 DOI: 10.1530/rep-12-0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Domestic cat oocytes are seasonally sensitive to FSH. Compared with those collected during the breeding season, oocytes from the nonbreeding (NB) season require more FSH during in vitro maturation to achieve comparable developmental competence. This study tested the hypothesis that this seasonal variation was due to altered expression of FSH receptors (FSHR) and/or FSH-induced genes. Relative expression levels of FSHR mRNA and FSH-enhanced gene estrogen receptor β (ESR2) were measured by qPCR in whole ovaries and immature cumulus-oocyte complexes (COCs) isolated from cat ovaries during the natural breeding vs NB seasons. Expression levels of FSH-induced genes prostaglandin-endoperoxide synthase 2 (PTGS2), early growth response protein-1 (EGR1), and epidermal growth factor receptor (EGFR) were examined in mature COCs from both seasons that were a) recovered in vivo or b) matured in vitro with conventional (1 μg/ml) or high (10 μg/ml) FSH concentrations. Overall, FSHR mRNA levels were lower in whole ovaries during the NB compared with breeding season but were similar in immature COCs, whereas ESR2 levels did not differ in either group between intervals. We observed changes in PTGS2, EGR1, and EGFR mRNA expression patterns across maturation in COCs within but not between the two seasons. The lack of seasonal differentiation in FSH-related genes was not consistent with the decreased developmental capacity of oocytes fertilized during the NB season. These findings reveal that the seasonal decrease in cat oocyte sensitivity to FSH occurs both in vivo and in vitro. Furthermore, this decline is unrelated to changes in expression of FSHR mRNA or mRNA of FSH-induced genes in COCs from antral follicles.
Collapse
Affiliation(s)
- Rebecca J Hobbs
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, PO Box 37012, MRC 5502, Washington, District of Columbia 20013, USA.
| | | | | | | |
Collapse
|
5
|
Liu HY, Zeng WD, Cao AL, Zhang CQ. Follicle-stimulating hormone promotes proliferation of cultured chicken ovarian germ cells through protein kinases A and C activation. J Zhejiang Univ Sci B 2011; 11:952-7. [PMID: 21121074 DOI: 10.1631/jzus.b1000073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The study was conducted to investigate the effects of follicle-stimulating hormone (FSH) on embryonic chicken ovarian germ cell proliferation and its possible involvements of protein kinases A (PKA) and C (PKC) pathways. Ovarian cells were treated with FSH alone or in the presence of forskolin (FRSK), PKA inhibitor (H(89)), PKC activator (PMA) or inhibitor (H(7)). The germ cell number was counted from micropictures. The immunocytochemistry of proliferating cell nuclear antigen (PCNA) was applied to identify the proliferating cells. The germ cell labeling index (LI) was determined for cell proliferation. The FSH treatment increased the germ cell number, and this stimulating effect was enhanced by FRSK or PMA, but inhibited by H(89) or H(7) in a dose-dependent manner. Moreover, the PCNA-LI showed parallel changes with germ cell numbers. This study suggests that FSH may stimulate proliferation of cultured chicken ovarian germ cells by activation of both the PKA and PKC signaling pathways.
Collapse
Affiliation(s)
- Hong-yun Liu
- Key Laboratory of Animal Epidemic Etiology and Immunological Prevention of the Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
6
|
Ulloa-Aguirre A, Zariñán T, Pasapera AM, Casas-González P, Dias JA. Multiple facets of follicle-stimulating hormone receptor function. Endocrine 2007; 32:251-63. [PMID: 18246451 DOI: 10.1007/s12020-008-9041-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/04/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by the anterior pituitary gland. This gonadotropin plays an essential role in reproduction. Its receptor (FSHR) belongs to the superfamily of G protein-coupled receptors (GPCR), specifically the family of rhodopsin-like receptors. Agonist binding to the FSHR triggers the rapid activation of multiple signaling cascades, mainly the cAMP-adenylyl cyclase-protein kinase A cascade, that impact diverse biological effects of FSH in the gonads. As in other G protein-coupled receptors, the several cytoplasmic domains of the FSHR are involved in signal transduction and termination of the FSH signal. Here we summarize some recent information on the signaling cascades activated by FSH as well as on the role of the intracytoplasmic domains of the FSHR in coupling to membrane and cytosolic proteins linked to key biological functions regulated by the FSH-FSHR system.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Apartado Postal 99-065, Unidad Independencia, C.P. 10101 Mexico, D.F., Mexico.
| | | | | | | | | |
Collapse
|