1
|
Gasperini B, Falvino A, Piccirilli E, Tarantino U, Botta A, Visconti VV. Methylation of the Vitamin D Receptor Gene in Human Disorders. Int J Mol Sci 2023; 25:107. [PMID: 38203278 PMCID: PMC10779104 DOI: 10.3390/ijms25010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The Vitamin D Receptor (VDR) mediates the actions of 1,25-Dihydroxvitamin D3 (1,25(OH)2D3), which has important roles in bone homeostasis, growth/differentiation of cells, immune functions, and reduction of inflammation. Emerging evidences suggest that epigenetic modifications of the VDR gene, particularly DNA methylation, may contribute to the onset and progression of many human disorders. This review aims to summarize the available information on the role of VDR methylation signatures in different pathological contexts, including autoimmune diseases, infectious diseases, cancer, and others. The reversible nature of DNA methylation could enable the development of therapeutic strategies, offering new avenues for the management of these worldwide diseases.
Collapse
Affiliation(s)
- Beatrice Gasperini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Angela Falvino
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Eleonora Piccirilli
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| |
Collapse
|
2
|
Agliardi C, Guerini FR, Bolognesi E, Zanzottera M, Clerici M. VDR Gene Single Nucleotide Polymorphisms and Autoimmunity: A Narrative Review. BIOLOGY 2023; 12:916. [PMID: 37508347 PMCID: PMC10376382 DOI: 10.3390/biology12070916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023]
Abstract
The vitamin D/Vitamin D receptor (VDR) axis is crucial for human health as it regulates the expression of genes involved in different functions, including calcium homeostasis, energy metabolism, cell growth and differentiation, and immune responses. In particular, the vitamin D/VDR complex regulates genes of both innate and adaptive immunity. Autoimmune diseases are believed to arise from a genetic predisposition and the presence of triggers such as hormones and environmental factors. Among these, a role for Vitamin D and molecules correlated to its functions has been repeatedly suggested. Four single nucleotide polymorphisms (SNPs) of the VDR gene, ApaI, BsmI, TaqI, and FokI, in particular, have been associated with autoimmune disorders. The presence of particular VDR SNP alleles and genotypes, thus, was observed to modulate the likelihood of developing diverse autoimmune conditions, either increasing or reducing it. In this work, we will review the scientific literature suggesting a role for these different factors in the pathogenesis of autoimmune conditions and summarize evidence indicating a possible VDR SNP involvement in the onset of these diseases. A better understanding of the role of the molecular mechanisms linking Vitamin D/VDR and autoimmunity might be extremely useful in designing novel therapeutic avenues for these disorders.
Collapse
Affiliation(s)
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, LAMMB, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
3
|
Guo Y, Zhang Y, Tang X, Liu X, Xu H. Association between Vitamin D receptor (VDR) gene polymorphisms and hypertensive disorders of pregnancy: a systematic review and meta-analysis. PeerJ 2023; 11:e15181. [PMID: 37123013 PMCID: PMC10143592 DOI: 10.7717/peerj.15181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background Hypertensive disorders of pregnancy (HDP) are currently one of the major causes of pregnancy-related maternal and fetal morbidity and mortality worldwide. Recent studies provide evidence that maternal Vitamin D receptor (VDR) gene polymorphisms probably play a key role by affecting the biological function of vitamin D in some adverse pregnancy outcomes, while the relationship between the VDR gene polymorphisms and the risk of HDP remains controversial in current studies. This systematic review and meta-analysis aimed to comprehensively evaluate the association of the VDR gene polymorphisms with HDP susceptibility. Methods This meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and a protocol has been registered in the PROSPERO (ID: CRD42022344383) before commencing this review. PubMed, Web of Science, Embase, and the Cochrane Library databases were searched until January 21, 2023. Case-control and cohort studies that reported the association of the VDR gene polymorphisms with HDP were included. The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS) for non-randomized studies. The odds ratios (ORs) with corresponding 95% confidence intervals (CIs) of the five models (allele model, dominant model, recessive model, homozygous model, heterozygous model) were pooled respectively, and subgroup analysis was performed based on ethnicity. Results A total of ten studies were included. The VDR gene ApaI polymorphism was associated with HDP susceptibility in the dominant model (OR: 1.38; 95% CI [1.07-1.79]; P = 0.014) and the heterozygote model (OR: 1.48; 95% CI [1.12-1.95]; P = 0.006). In subgroup analysis, the heterozygote model (OR: 2.06; 95% CI [1.21-3.52]; P = 0.008) of the ApaI polymorphism was associated with HDP in Asians, but not in Caucasians. Conclusion The VDR gene ApaI polymorphism may be associated with HDP susceptibility. Insufficient evidence to support the existence of ethnic differences in this association.
Collapse
Affiliation(s)
- Yicong Guo
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yu Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiangling Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huilan Xu
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Moreno-Torres M, Guzmán C, Petrov PD, Jover R. Valproate and Short-Chain Fatty Acids Activate Transcription of the Human Vitamin D Receptor Gene through a Proximal GC-Rich DNA Region Containing Two Putative Sp1 Binding Sites. Nutrients 2022; 14:2673. [PMID: 35807853 PMCID: PMC9268083 DOI: 10.3390/nu14132673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
The vitamin D receptor (VDR) mediates 1,25-dihydroxyvitamin D3 pleiotropic biological actions through transcription regulation of target genes. The expression levels of this ligand-activated nuclear receptor are regulated by multiple mechanisms both at transcriptional and post-transcriptional levels. Vitamin D3 is the natural VDR activator, but other molecules and signaling pathways have also been reported to regulate VDR expression and activity. In this study, we identify valproic acid (VPA) and natural short-chain fatty acids (SCFAs) as novel transcriptional activators of the human VDR (hVDR) gene. We further report a comprehensive characterization of VPA/SCFA-responsive elements in the 5' regulatory region of the hVDR gene. Two alternative promoter DNA regions (of 2.4 and 3.8 kb), as well as subsequent deletion fragments, were cloned in pGL4-LUC reporter vector. Transfection of these constructs in HepG2 and human Upcyte hepatocytes followed by reporter assays demonstrated that a region of 107 bp (from -107 to -1) upstream of the transcription start site in exon 1a is responsible for most of the increase in transcriptional activity in response to VPA/SCFAs. This short DNA region is GC-rich, does not contain an apparent TATA box, and includes two bona fide binding sites for the transcription factor Sp1. Our results substantiate the hypothesis that VPA and SCFAs facilitate the activity of Sp1 on novel Sp1 responsive elements in the hVDR gene, thus promoting VDR upregulation and signaling. Elevated hepatic VDR levels have been associated with liver steatosis and, therefore, our results may have clinical relevance in epileptic pediatric patients on VPA therapy. Our results could also be suggestive of VDR upregulation by SCFAs produced by gut microbiota.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carla Guzmán
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
| | - Petar D. Petrov
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV. Role of Neural Stem Cells and Vitamin D Receptor (VDR)-Mediated Cellular Signaling in the Mitigation of Neurological Diseases. Mol Neurobiol 2022; 59:4065-4105. [PMID: 35476289 DOI: 10.1007/s12035-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Specific stem cell-based therapies for treating Alzheimer's disease, Parkinson's disease, and schizophrenia are gaining importance in recent years. Accumulating data is providing further support by demonstrating the efficacy of neural stem cells in enhancing the neurogenesis in the aging brain. In addition to stem cells, recent studies have shown the efficacy of supplementing vitamin D in promoting neurogenesis and neuronal survival. Studies have also demonstrated the presence of mutational variants and single-nucleotide polymorphisms of the vitamin D receptor (VDR) in neurological disorders; however, implications of these mutations in the pathophysiology and response to drug treatment are yet to be explored. Hence, in this article, we have reviewed recent reports pertaining to the role of neural stem cells and VDR-mediated cellular signaling cascades that are involved in enhancing the neurogenesis through Wnt/β-catenin and Sonic Hedgehog pathways. This review benefits neurobiologists and pharmaceutical industry experts to develop stem cell-based and vitamin D-based therapies to better treat the patients suffering from neurological diseases.
Collapse
Affiliation(s)
- Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - R Rajalakshmi
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - C M Ramya
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
6
|
Zenata O, Vrzal R. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget 2018; 8:35390-35402. [PMID: 28427151 PMCID: PMC5471063 DOI: 10.18632/oncotarget.15697] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
Vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcription factors. Activated VDR is responsible for maintaining calcium and phosphate homeostasis, and is required for proper cellular growth, cell differentiation and apoptosis. The expression of both phases I and II drug-metabolizing enzymes is also regulated by VDR, therefore it is clinically important. Post-translational modifications of NRs have been known as an important mechanism modulating the activity of NRs and their ability to drive the expression of target genes. The aim of this mini review is to summarize the current knowledge about post-transcriptional and post-translational modifications of VDR.
Collapse
Affiliation(s)
- Ondrej Zenata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
7
|
Amadori D, Serra P, Masalu N, Pangan A, Scarpi E, Bugingo AM, Katabalo D, Ibrahim T, Bongiovanni A, Miserocchi G, Spadazzi C, Liverani C, Turri V, Tedaldi R, Mercatali L. Vitamin D receptor polymorphisms or serum levels as key drivers of breast cancer development? The question of the vitamin D pathway. Oncotarget 2017; 8:13142-13156. [PMID: 28061456 PMCID: PMC5355083 DOI: 10.18632/oncotarget.14482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/15/2016] [Indexed: 01/25/2023] Open
Abstract
As total vitamin D levels are often lower in black than in white Americans, the former are frequently classified as vitamin D-deficient. To fully understand African vitamin D (25(OH)D) status, other factors should be considered, e.g. vitamin D blood carrier, vitamin D-binding protein (DBP), vitamin D receptor (VDR) and DBP polymorphisms. A prospective study on an indigenous black Tanzanian and a Caucasian Italian population was performed on 50 healthy donors from both populations and 35 Caucasian and 18 African breast cancer patients. 25(OH)D and DBP serum levels were analyzed by ELISA. A1012G, Cdx2 and Fok1 VDR polymorphisms and DBP polymorphisms rs4588 and rs7041 were genotyped by real-time PCR. Vitamin D and DBP levels were lower in healthy African donors than in Caucasians. Africans had a significantly higher frequency of AA and CC for Cdx2 and Fok1 polymorphisms, respectively. These allelic variants were related to a higher transcription of VDR gene and a higher activity of VDR receptor. With regard to polymorphism distribution, Africans showed innate higher levels and activity of VDR. We conclude that a strengthening of the vitamin D pathway could have a protective role against the development of breast cancer in the African population.
Collapse
Affiliation(s)
- Dino Amadori
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Patrizia Serra
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Nestory Masalu
- Department of Oncology, Bugando Medical Center, Mwanza, Tanzania, Africa
| | - Akwilina Pangan
- Department of Oncology, Bugando Medical Center, Mwanza, Tanzania, Africa
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | | | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Turri
- Healthcare Administration, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Rosanna Tedaldi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
8
|
Li L, Shang F, Zhang W, Zhang C, Li J, Wang C, Wei L. Role of vitamin D receptor gene polymorphisms in pancreatic cancer: a case-control study in China. Tumour Biol 2015; 36:4707-14. [PMID: 25616697 DOI: 10.1007/s13277-015-3119-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022] Open
Abstract
The study was conducted to investigate the relationship between vitamin D receptor (VDR) gene rs2228570 and rs1544410 polymorphisms and pancreatic cancer (PC). Two hundred fifty-eight PC patients and 385 healthy controls were enrolled in this study. The genotypes of rs2228570 and rs1544410 were assayed using the polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP) method. Univariate and multivariate logistic regression analyses were applied to determine the association between PC-onset risk and VDR gene polymorphisms. Contingency table analysis was performed to evaluate the relationship between the gene polymorphisms and clinicopathological tumor features such as location, pathological differentiation, and the TNM classification of PC. In rs2228570, the T loci and genotypes with T allele could increase the risk of PC; in rs1544410, the G loci and genotypes AG + GG could decrease the onset risk of PC significantly. The contingency table analysis indicated that the rs2228570 polymorphisms were correlated with the pathological differentiation of PC significantly, and the rs1544410 polymorphisms were correlated with the TNM classification of PC significantly. In conclusion, the VDR gene polymorphisms were correlated with incidence, pathological differentiation, and the TNM classification of PC significantly in our study population. So, the VDR polymorphisms have important implications in the incident rate and survival rate of PC.
Collapse
Affiliation(s)
- Lei Li
- Department of Gastroenterology, Taian City Central Hospital, 271000, Taian, Shandong Province, China,
| | | | | | | | | | | | | |
Collapse
|
9
|
Atoum MF, Tchoporyan MN. Association between circulating vitamin D, the Taq1 vitamin D receptor gene polymorphism and colorectal cancer risk among Jordanians. Asian Pac J Cancer Prev 2014; 15:7337-7341. [PMID: 25227839 DOI: 10.7314/apjcp.2014.15.17.7337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The physiological role of vitamin D extends beyond bone health and calcium-phosphate homeostasis to effects on cancer risk, mainly for colorectal cancer. Vitamin D may have an anticancer effect in colorectal cancer mediated by binding of the active form 1,25(OH)2D to the vitamin D receptor (VDR). The Taq1 VDR gene polymorphism, a C-to-T base substitution (rs731236) in exon 9 may influence its expression and function. The aim of this study was to determine the 25(OH)D vitamin D level and to investigate the association between circulating vitamin D level and Taq1VDR gene polymorphism among Jordanian colorectal cancer patients. MATERIALS AND METHODS This case control study enrolled ninety-three patients and one hundred and two healthy Jordanian volunteers from AL-Basheer Hospital/Amman (2012-2013). Ethical approval and signed consent forms were obtained from all participants before sample collection. 25(OH)D levels were determined by competitive immunoassay Elecsys (Roche Diagnostic, France). DNA was extracted (Promega, USA) and amplified by PCR followed by VDR Taq1 restriction enzyme digestion. The genotype distribution was evaluated by paired t-test and chi-square. Comparison between vitamin D levels among CRC and control were assessed by odds ratio with 95% confidence interval. RESULTS The vitamin D serum level was significantly lower among colorectal cancer patients (8.34 ng/ml) compared to the healthy control group (21.02 ng/ml). Patients deficient in vitamin D (less than 10.0 ng/ml) had increased colorectal cancer risk 19.2 fold compared to control. Only 2.2% of CRC patients had optimal vitamin D compared to 23.5% among healthy control. TT, Tt and tt Taq1 genotype frequencies among CRC cases was 35.5%, 50.5% and 14% compared to 43.1%, 41.2% and 15.7% among healthy control; respectively. CRC patients had lower mean vitamin D level among TT (8.91 ± 4.31) and Tt (9.15 ± 5.25) genotypes compared to control ((21.3 ± 8.31) and (19.3 ± 7.68); respectively. CONCLUSIONS There is significant association between low 25(OH)D serum level and colorectal cancer risk. The VDRTaq1 polymorphism was associated with increased colorectal cancer risk among patient with VDRTaq1 TT and Tt genotypes. Understanding the functional mechanism of VDRTaq1 TT and Tt may provide a strategy for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan E-mail :
| | | |
Collapse
|
10
|
Lin MW, Tsai SJ, Chou PY, Huang MF, Sun HS, Wu MH. Vitamin D receptor 1a promotor -1521 G/C and -1012 A/G polymorphisms in polycystic ovary syndrome. Taiwan J Obstet Gynecol 2013; 51:565-71. [PMID: 23276559 DOI: 10.1016/j.tjog.2012.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2011] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The aim of this case-control study was to investigate whether the vitamin D receptor (VDR) 1a promoter gene polymorphisms are associated with susceptibility to polycystic ovary syndrome (PCOS). METHODS Women with PCOS and a control group, all aged 18-45 years, were enrolled. Genotypes of two functional single nucleotide polymorphisms (SNPs), the 1521 bp (G/C) and 1012 bp (A/G), located on the 1a promoter of the VDR gene were determined by using direct sequencing. Serum 25-hydroxyvitamin D levels were measured by ELISA. RESULTS Two functional SNPs in the 1a promoter region of the VDR gene were in complete linkage disequilibrium. The genotype distributions of these two polymorphisms in the PCOS group were not significantly different from those of the control group. Further subgroup analyses according to body mass index also revealed no significant differences in the genotype distribution in the PCOS group. Significantly lower serum 25-hydroxyvitamin D levels were observed in the heterozygous 1521CG/1012GA haplotype of both groups. Metformin treatment was only effective to increase serum 25-hydroxyvitamin D levels in PCOS patients carrying the homozygous 1521G/1012A haplotype. CONCLUSION These results suggest that the VDR 1a promoter polymorphisms may not be associated with the risk for PCOS, but are associated with serum 25-hydroxyvitamin D levels. Metformin treatment will be beneficial to PCOS patients without the VDR 1a promoter variant in Taiwanese population.
Collapse
Affiliation(s)
- Ming-Wei Lin
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Rowland GW, Schwartz GG, John EM, Ingles SA. Protective effects of low calcium intake and low calcium absorption vitamin D receptor genotype in the California Collaborative Prostate Cancer Study. Cancer Epidemiol Biomarkers Prev 2013; 22:16-24. [PMID: 23129590 PMCID: PMC3763955 DOI: 10.1158/1055-9965.epi-12-0922-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High calcium intake is consistently associated with increased prostate cancer risk in epidemiologic studies. We previously reported that the positive association between calcium intake and risk of aggressive prostate cancer was modified by the single-nucleotide polymorphism (SNP) in the CDX-2 binding site of the vitamin D receptor (VDR) gene, among African American men. METHODS We expanded our previous study to include White men, a population with a higher calcium intake and a higher prevalence of the low absorption allele. We also examined VDR polymorphisms at other loci unrelated to calcium absorption. The study included 1,857 prostate cancer cases (1,140 with advanced stage at diagnosis, 717 with localized stage) and 1,096 controls. OR were estimated using conditional logistic regression. RESULTS Among both Blacks and Whites, we observed a threshold for calcium intake (604 mg/d) below which prostate cancer risk declined sharply. Low calcium intake was most strongly associated with decreased risk among men with the VDR Cdx2 low calcium absorption genotype (P for interaction = 0.001 and P = 0.06 for Whites and African Americans, respectively). Among all men with this genotype, those in the lowest quartile of calcium intake (≤604 mg/d) had a 50% reduction in risk as compared with those in the upper three quartiles [OR = 0.49; 95% confidence interval (CI), 0.36-0.67]. The association between calcium intake and prostate cancer risk was not modified by genotype at other VDR loci. CONCLUSIONS Our findings support the hypothesis that genetic determinants of calcium absorption influence prostate cancer risk. IMPACT The differences between African Americans and Whites in calcium absorption and dietary calcium intake may contribute to racial disparities in prostate cancer incidence and mortality rates.
Collapse
Affiliation(s)
- Glovioell W. Rowland
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Gary G. Schwartz
- Departments of Cancer Biology, Urology, and Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, CA
- Department of Health Research and Policy, Stanford University School of Medicine and Stanford Cancer Institute, Stanford, CA
| | - Sue Ann Ingles
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
12
|
Rowland GW, Schwartz GG, John EM, Ingles SA. Calcium intake and prostate cancer among African Americans: effect modification by vitamin D receptor calcium absorption genotype. J Bone Miner Res 2012; 27:187-94. [PMID: 21887707 PMCID: PMC3234334 DOI: 10.1002/jbmr.505] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/15/2011] [Accepted: 08/26/2011] [Indexed: 11/07/2022]
Abstract
High dietary intake of calcium has been classified as a probable cause of prostate cancer, although the mechanism underlying the association between dietary calcium and prostate cancer risk is unclear. The vitamin D receptor (VDR) is a key regulator of calcium absorption. In the small intestine, VDR expression is regulated by the CDX-2 transcription factor, which binds a polymorphic site in the VDR gene promoter. We examined VDR Cdx2 genotype and calcium intake, assessed by a food frequency questionnaire, in 533 African-American prostate cancer cases (256 with advanced stage at diagnosis, 277 with localized stage) and 250 African-American controls who participated in the California Collaborative Prostate Cancer Study. We examined the effects of genotype, calcium intake, and diet-gene interactions by conditional logistic regression. Compared with men in the lowest quartile of calcium intake, men in the highest quartile had an approximately twofold increased risk of localized and advanced prostate cancer (odds ratio [OR] = 2.20, 95% confidence interval [CI] = 1.40, 3.46), with a significant dose-response. Poor absorbers of calcium (VDR Cdx2 GG genotype) had a significantly lower risk of advanced prostate cancer (OR = 0.41, 95% CI = 0.19, 0.90). The gene-calcium interaction was statistically significant (p = 0.03). Among men with calcium intake below the median (680 mg/day), carriers of the G allele had an approximately 50% decreased risk compared with men with the AA genotype. These findings suggest a link between prostate cancer risk and high intestinal absorption of calcium.
Collapse
Affiliation(s)
- Glovioell W. Rowland
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Gary G. Schwartz
- Departments of Cancer Biology, Urology, and Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC
| | - Esther M. John
- Cancer Prevention Institute of California (formerly the Northern California Cancer Center), Fremont, CA
- Department of Health Research and Policy, Stanford University School of Medicine and Stanford Cancer Center, Stanford, CA
| | - Sue Ann Ingles
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
13
|
Holt SK, Kwon EM, Koopmeiners JS, Lin DW, Feng Z, Ostrander EA, Peters U, Stanford JL. Vitamin D pathway gene variants and prostate cancer prognosis. Prostate 2010; 70:1448-60. [PMID: 20687218 PMCID: PMC2927712 DOI: 10.1002/pros.21180] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Observational studies linking vitamin D deficiency with increased prostate cancer (PCa) mortality and the pleiotropic anticancer effects of vitamin D in malignant prostate cell lines have initiated trials examining potential therapeutic benefits of vitamin D metabolites. There have been some successes but efforts have been hindered by risk of inducing hypercalcemia. A limited number of studies have investigated associations between variants in vitamin D pathway genes with aggressive forms of PCa. Increased understanding of relevant germline genetic variation with disease outcome could aid in the development of vitamin-D-based therapies. METHODS We undertook a comprehensive analysis of 48 tagging single-nucleotide polymorphisms (tagSNPs) in genes encoding for vitamin D receptor (VDR), vitamin D activating enzyme 1-alpha-hydroxylase (CYP27B1), and deactivating enzyme 24-hydroxylase (CYP24A1) in a cohort of 1,294 Caucasian cases with an average of 8 years of follow-up. Disease recurrence/progression and PCa-specific mortality risks were estimated using adjusted Cox proportional hazards regression. RESULTS There were 139 cases with recurrence/progression events and 57 cases who died of PCa. Significantly altered risks of recurrence/progression were observed in relation to genotype for two VDR tagSNPs (rs6823 and rs2071358) and two CYP24A1 tagSNPs (rs927650 and rs2762939). Three VDR tagSNPs (rs3782905, rs7299460, and rs11168314), one CYP27B1 tagSNP (rs3782130), and five CYP24A1 tagSNPs (rs3787557, rs4809960, rs2296241, rs2585428, and rs6022999) significantly altered risks of PCa death. CONCLUSIONS Genetic variations in vitamin D pathway genes were found to alter both risk of recurrence/progression and PCa-specific mortality.
Collapse
Affiliation(s)
- Sarah K Holt
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|