1
|
Flannery JC, Tirrell PS, Baumgartner NE, Daniel JM. Neuroestrogens, the hippocampus, and female cognitive aging. Horm Behav 2025; 170:105710. [PMID: 40036999 DOI: 10.1016/j.yhbeh.2025.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Research conducted over the last several decades implicates ovarian estrogens as important modulators of hippocampal function. More recently however, the importance of estrogens synthesized in the brain de novo for hippocampal function has been recognized. These brain-derived neuroestrogens act in the hippocampus to regulate dendritic spine dynamics and synaptic plasticity as well as hippocampus-dependent memory. The current report provides an overview of research conducted in model systems elucidating the actions of neuroestrogens in the hippocampus and the subsequent consequences for cognition. We highlight the relationship between ovarian estrogens and brain-derived estrogens and discuss implications for female cognitive aging of the putative decline in hippocampal levels of neuroestrogens following loss of ovarian function. Finally, we propose a model of menopause in which a short-term period of midlife estradiol treatment changes the trajectory of hippocampal neuroestrogen production long-term, resulting in sustained interactions of neuroestrogens, insulin-like growth factor-1, and estrogen receptor signaling in the hippocampus, interactions that support successful brain and cognitive aging.
Collapse
Affiliation(s)
- Jill C Flannery
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Parker S Tirrell
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Nina E Baumgartner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States of America
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America; Department of Psychology, Tulane University, New Orleans, LA, 70118, United States of America.
| |
Collapse
|
2
|
Khanyile R, Chipiti T, Hull R, Dlamini Z. Radiogenomic Landscape of Metastatic Endocrine-Positive Breast Cancer Resistant to Aromatase Inhibitors. Cancers (Basel) 2025; 17:808. [PMID: 40075655 PMCID: PMC11899325 DOI: 10.3390/cancers17050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer poses a significant global health challenge and includes various subtypes, such as endocrine-positive, HER2-positive, and triple-negative. Endocrine-positive breast cancer, characterized by estrogen and progesterone receptors, is commonly treated with aromatase inhibitors. However, resistance to these inhibitors can hinder patient outcomes due to genetic and epigenetic alterations, mutations in the estrogen receptor 1 gene, and changes in signaling pathways. Radiogenomics combines imaging techniques like MRI and CT scans with genomic profiling methods to identify radiographic biomarkers associated with resistance. This approach enhances our understanding of resistance mechanisms and metastasis patterns, linking them to specific genomic profiles and common metastasis sites like the bone and brain. By integrating radiogenomic data, personalized treatment strategies can be developed, improving predictive and prognostic capabilities. Advancements in imaging and genomic technologies offer promising avenues for enhancing radiogenomic research. A thorough understanding of resistance mechanisms is crucial for developing effective treatment strategies, making radiogenomics a valuable integrative approach in personalized medicine that aims to improve clinical outcomes for patients with metastatic endocrine-positive breast cancer.
Collapse
Affiliation(s)
- Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Pretoria 0001, South Africa
| | - Talent Chipiti
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| |
Collapse
|
3
|
Divella R, Marino G, Infusino S, Lanotte L, Gadaleta-Caldarola G, Gadaleta-Caldarola G. The Mediterranean Lifestyle to Contrast Low-Grade Inflammation Behavior in Cancer. Nutrients 2023; 15:1667. [PMID: 37049508 PMCID: PMC10096668 DOI: 10.3390/nu15071667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
A healthy diet and an active lifestyle are both effective ways to prevent, manage, and treat many diseases, including cancer. A healthy, well-balanced diet not only ensures that the body gets the right amount of nutrients to meet its needs, but it also lets the body get substances that protect against and/or prevent certain diseases. It is now clear that obesity is linked to long-term diseases such as heart disease, diabetes, and cancer. The main reasons for people being overweight or obese are having bad eating habits and not moving around enough. Maintaining weight in the normal range may be one of the best things to avoid cancer. It has been scientifically proven that those who perform regular physical activity are less likely to develop cancer than those who lead a sedentary lifestyle. Moving regularly not only helps to maintain a normal body weight, avoiding the effects that favor tumor growth in overweight subjects, but also makes the immune system more resistant by counteracting the growth of tumor cells. Physical activity also helps prevent cardiovascular and metabolic diseases. In this review, it is highlighted that the association between the Mediterranean diet and physical activity triggers biological mechanisms capable of counteracting the low-grade chronic inflammation found in patients with cancer. This assumes that healthy lifestyles associated with cancer therapies can improve the expectations and quality of life of cancer patients.
Collapse
Affiliation(s)
- Rosa Divella
- Unità Operativa Complessa di Oncologia, Ospedale “Mons. A. R. Dimiccoli”, Asl BT, Viale Ippocrate 15, 76121 Barletta, Italy
| | - Graziella Marino
- Department of Breast Unit—Centro d Riferimento Oncologico della Basilicata, IRCCS-CROB, Via Padre Pio 1, 85028 Rionero in Vulture, Italy
| | - Stefania Infusino
- Unità Operativa Complessa di Oncologia, Ospedale “SS Annunziata”, Via Felice Migliori 1, 87100 Cosenza, Italy
| | - Laura Lanotte
- Unità Operativa Complessa di Oncologia, Ospedale “Mons. A. R. Dimiccoli”, Asl BT, Viale Ippocrate 15, 76121 Barletta, Italy
| | - Gaia Gadaleta-Caldarola
- Scienze e Tecnologie Alimentari, Università di Parma, Via Delle Scienze 59/A, 43124 Parma, Italy
| | - Gennaro Gadaleta-Caldarola
- Unità Operativa Complessa di Oncologia, Ospedale “Mons. A. R. Dimiccoli”, Asl BT, Viale Ippocrate 15, 76121 Barletta, Italy
| |
Collapse
|
4
|
Baumgartner NE, McQuillen SM, Perry SF, Miller S, Maroteaux MJ, Gibbs RB, Daniel JM. History of Previous Midlife Estradiol Treatment Permanently Alters Interactions of Brain Insulin-like Growth Factor-1 Signaling and Hippocampal Estrogen Synthesis to Enhance Cognitive Aging in a Rat Model of Menopause. J Neurosci 2022; 42:7969-7983. [PMID: 36261268 PMCID: PMC9617614 DOI: 10.1523/jneurosci.0588-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Across species, including humans, elevated levels of brain estrogen receptor (ER) α are associated with enhanced cognitive aging, even in the absence of circulating estrogens. In rodents, short-term estrogen treatment, such as that commonly used in the menopausal transition, results in long-term increases in ERα levels in the hippocampus, leading to enhanced memory long after termination of estrogen treatment. However, mechanisms by which increased levels of brain ERα enhances cognitive aging remain unclear. Here we demonstrate in aging female rats that insulin-like growth factor-1 (IGF-1), which can activate ER via ligand-independent mechanisms, requires concomitant synthesis of brain-derived neuroestrogens to phosphorylate ERα via MAPK signaling, ultimately resulting in enhanced memory. In a rat model of menopause involving long-term ovarian hormone deprivation, hippocampal neuroestrogen activity decreases, altering IGF-1 activity and resulting in impaired memory. However, this process is reversed by short-term estradiol treatment. Forty days of estradiol exposure following ovariectomy results in maintenance of neuroestrogen levels that persist beyond the period of hormone treatment, allowing for continued interactions between IGF-1 and neuroestrogen signaling, elevated levels of hippocampal ERα, and ultimately enhanced memory. Collectively, results demonstrate that short-term estradiol use following loss of ovarian function has long-lasting effects on hippocampal function and memory by dynamically regulating cellular mechanisms that promote activity of ERα in the absence of circulating estrogens. Translational impacts of these findings suggest lasting cognitive benefits of short-term estrogen use near menopause and highlight the importance of hippocampal ERα, independent from the role of circulating estrogens, in regulating memory in aging females.SIGNIFICANCE STATEMENT Declines in ovarian hormones following menopause coincide with increased risk of cognitive decline. Because of potential health risks, current recommendations are that menopausal estrogen therapy be limited to a few years. Long-term consequences for the brain and memory of this short-term midlife estrogen therapy are unclear. Here, in a rodent model of menopause, we determined mechanisms by which short-term midlife estrogen exposure can enhance hippocampal function and memory with cognitive benefits and molecular changes enduring long after termination of estrogen exposure. Our model indicates long-lasting benefits of maintaining hippocampal estrogen receptor function in the absence of ongoing estrogen exposure and suggests potential strategies for combating age-related cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | - Matthieu J Maroteaux
- Brain Institute
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261
| | - Jill M Daniel
- Brain Institute
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
5
|
Barone I, Caruso A, Gelsomino L, Giordano C, Bonofiglio D, Catalano S, Andò S. Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obes Rev 2022; 23:e13358. [PMID: 34559450 PMCID: PMC9285685 DOI: 10.1111/obr.13358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
The incidence of obesity, a recognized risk factor for various metabolic and chronic diseases, including numerous types of cancers, has risen dramatically over the recent decades worldwide. To date, convincing research in this area has painted a complex picture about the adverse impact of high body adiposity on breast cancer onset and progression. However, an emerging but overlooked issue of clinical significance is the limited efficacy of the conventional endocrine therapies with selective estrogen receptor modulators (SERMs) or degraders (SERDs) and aromatase inhibitors (AIs) in patients affected by breast cancer and obesity. The mechanisms behind the interplay between obesity and endocrine therapy resistance are likely to be multifactorial. Therefore, what have we actually learned during these years and which are the main challenges in the field? In this review, we will critically discuss the epidemiological evidence linking obesity to endocrine therapeutic responses and we will outline the molecular players involved in this harmful connection. Given the escalating global epidemic of obesity, advances in understanding this critical node will offer new precision medicine-based therapeutic interventions and more appropriate dosing schedule for treating patients affected by obesity and with breast tumors resistant to endocrine therapies.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
6
|
AboulWafa OM, Daabees HMG, Hammad A, Badawi WA. New functionalized 6-thienylpyrimidine-5-carbonitriles as antiproliferative agents against human breast cancer cells. Arch Pharm (Weinheim) 2021; 354:e2100177. [PMID: 34347303 DOI: 10.1002/ardp.202100177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023]
Abstract
6-Thienylpyrimidine-5-carbonitrile derivatives were synthesized and screened for their in vitro antiproliferative activities against two human breast cancer cell lines in comparison to 5-fluorouracil as a reference. Compounds 2, 3a-c, and 6b evolved as the most active congeners against both cell lines, while others showed selectivity for only one cell line. Compound 2 exerted its effect through inhibition of the epidermal growth factor receptor (EGFR), while 6b showed less aromatase inhibitory activity than letrozole. The rest of the tested compounds did not show significant inhibition, and it can be assumed that they exert their antiproliferative activity through different target mechanisms. In addition, caspase-9 protein activation assays, cell cycle analysis using flow cytometry, and annexin V-fluorescein isothiocyanate-propidium iodide (FITC/PI) dual staining assays were performed for the most active compounds. All the tested compounds were found to be potent pyrimidine derivatives able to initiate apoptosis in MCF-7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hoda M G Daabees
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ali Hammad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
Farghaly AM, AboulWafa OM, Baghdadi HH, Abd El Razik HA, Sedra SMY, Shamaa MM. New thieno[3,2-d]pyrimidine-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents, EGFR and ARO inhibitors inducing apoptosis in breast cancer cells. Bioorg Chem 2021; 115:105208. [PMID: 34365057 DOI: 10.1016/j.bioorg.2021.105208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
An array of newly synthesized thieno[3,2-d]pyrimidine-based derivatives and thienotriazolopyrimidines hybridized with some pharmacophoric anticancer fragments were designed, synthesized and assessed for their in vitro antiproliferative activity against MCF-7 and MDA-MB-231 breast cancer cell lines using erlotinib and pictilisib as reference standards in the MTT assay. In general, many compounds were endowed with considerable antiproliferative activity (IC50 = 0.43-1.31 µM). Some of the tested compounds, namely 3c, 5b, 5c, 9d, 10, 11b and 13 displayed remarkable antiproliferative activity against both cell lines. Meanwhile, compounds 2c-e, 3b, 4a, 5a, 9c and 15b showed noticeable selectivity against MCF-7 cells while compounds 2b, 3a, 4b, 6a-c, 7, 8, 9b and 12 exhibited considerable selectivity against MDA-MB-231 cells. Further mechanistic evidences for their anticancer activities were provided by screening the most potent compounds against MCF-7 and/or MDA-MB-231 cells for EGFR and ARO inhibitory activities using erlotinib and letrozole as reference standards respectively. Results proved that, in general, tested compounds were better EGFRIs than ARIs. In addition, significant overexpression in caspase-9 level in treated MCF-7 breast cell line samples was observed for all tested compounds with the 4-fluorophenylhydrazone derivative 2d exhibiting the highest activation. In treated MDA-MB-231 breast cell line samples, 11b was found to highly induce caspase-9 level thereby inducing apoptosis. Cell cycle analysis and Annexin V-FITC/PI assay were also assessed for active compounds where results indicated that all tested compounds induced preG1 apoptosis and cell cycle arrest at G2/M phase. Compound 9d, as an inhibitor of ARO, was observed to downregulate the downstream signaling proteins HSP27 and p-ERK in MCF-7 cells. Furthermore, compound 11b downregulated EGFR expression as well as the downstream signaling protein p-AKT. Docking experiments on EGFR and ARO enzymes supported their in vitro results. Thus, the thienotriazolopyrimidines 11b and 12 showing good EGFR inhibition and the thieno[3,2-d]-pyrimidine derivatives 3b and 9d, eliciting the best ARO inhibition activity, can be considered as new candidates as anti-breast cancer agents that necessitate further development.
Collapse
Affiliation(s)
- Ahmed M Farghaly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba A Abd El Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Samir M Y Sedra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Marium M Shamaa
- Clinical and Biological Sciences (Biochemistry and Molecular Biology) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
8
|
Molehin D, Filleur S, Pruitt K. Regulation of aromatase expression: Potential therapeutic insight into breast cancer treatment. Mol Cell Endocrinol 2021; 531:111321. [PMID: 33992735 DOI: 10.1016/j.mce.2021.111321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Estrogen signaling has been implicated in hormone-dependent breast cancer which constitutes >75% of breast cancer diagnosis and other malignancies. Aromatase, the key enzyme involved in the synthesis of estrogen, is often dysregulated in breast cancers. This has led to the administration of aromatase-inhibitors (AIs), commonly used for hormone-dependent breast cancers. Unfortunately, the increasing development of acquired resistance to the current AIs and modulators of estrogen receptors, following initial disease steadiness, has posed a serious clinical challenge in breast cancer treatment. In this review we highlight historical and recent advances on the transcriptional and post-translational regulation of aromatase in both physiological and pathological contexts. We also discuss the different drug combinations targeting various tumor promoting cell signaling pathways currently being developed and tested both in laboratory settings and in the clinic.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Stephanie Filleur
- Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Bleach R, Sherlock M, O'Reilly MW, McIlroy M. Growth Hormone/Insulin Growth Factor Axis in Sex Steroid Associated Disorders and Related Cancers. Front Cell Dev Biol 2021; 9:630503. [PMID: 33816477 PMCID: PMC8012538 DOI: 10.3389/fcell.2021.630503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
To date, almost all solid malignancies have implicated insulin-like growth factor (IGF) signalling as a driver of tumour growth. However, the remarkable level of crosstalk between sex hormones, the IGF-1 receptor (IGF-1R) and its ligands IGF-1 and 2 in endocrine driven cancers is incompletely understood. Similar to the sex steroids, IGF signalling is essential in normal development as well as growth and tissue homoeostasis, and undergoes a steady decline with advancing age and increasing visceral adiposity. Interestingly, IGF-1 has been found to play a compensatory role for both estrogen receptor (ER) and androgen receptor (AR) by augmenting hormonal responses in the absence of, or where low levels of ligand are present. Furthermore, experimental, and epidemiological evidence supports a role for dysregulated IGF signalling in breast and prostate cancers. Insulin-like growth factor binding protein (IGFBP) molecules can regulate the bioavailability of IGF-1 and are frequently expressed in these hormonally regulated tissues. The link between age-related disease and the role of IGF-1 in the process of ageing and longevity has gained much attention over the last few decades, spurring the development of numerous IGF targeted therapies that have, to date, failed to deliver on their therapeutic potential. This review will provide an overview of the sexually dimorphic nature of IGF signalling in humans and how this is impacted by the reduction in sex steroids in mid-life. It will also explore the latest links with metabolic syndromes, hormonal imbalances associated with ageing and targeting of IGF signalling in endocrine-related tumour growth with an emphasis on post-menopausal breast cancer and the impact of the steroidal milieu.
Collapse
Affiliation(s)
- Rachel Bleach
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mark Sherlock
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Michael W O'Reilly
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
10
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
11
|
Ferreira Almeida C, Oliveira A, João Ramos M, Fernandes PA, Teixeira N, Amaral C. Estrogen receptor-positive (ER +) breast cancer treatment: Are multi-target compounds the next promising approach? Biochem Pharmacol 2020; 177:113989. [PMID: 32330493 DOI: 10.1016/j.bcp.2020.113989] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Endocrine therapy is currently the main therapeutic approach for estrogen receptor-positive (ER+) breast cancer, the most frequent subtype of breast cancer in women worldwide. For this subtype of tumors, the current clinical treatment includes aromatase inhibitors (AIs) and anti-estrogenic compounds, such as Tamoxifen and Fulvestrant, being AIs the first-line treatment option for post-menopausal women. Moreover, the recent guidelines also suggest the use of these compounds by pre-menopausal women after suppressing ovaries function. However, besides its therapeutic efficacy, the prolonged use of this type of therapies may lead to the development of several adverse effects, as well as, endocrine resistance, limiting the effectiveness of such treatments. In order to surpass this issues and clinical concerns, during the last years, several studies have been suggesting alternative therapeutic approaches, considering the function of aromatase, ERα and ERβ. Here, we review the structural and functional features of these three targets and their importance in ER+ breast cancer treatment, as well as, the current treatment strategies used in clinic, emphasizing the importance of the development of multi-target compounds able to simultaneously modulate these key targets, as a novel and promising therapeutic strategy for this type of cancer.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Oliveira
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria João Ramos
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Spinello A, Ritacco I, Magistrato A. Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers. Expert Opin Drug Discov 2019; 14:1065-1076. [DOI: 10.1080/17460441.2019.1646245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelo Spinello
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ida Ritacco
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
13
|
Ritacco I, Spinello A, Ippoliti E, Magistrato A. Post-Translational Regulation of CYP450s Metabolism As Revealed by All-Atoms Simulations of the Aromatase Enzyme. J Chem Inf Model 2019; 59:2930-2940. [PMID: 31033287 DOI: 10.1021/acs.jcim.9b00157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorylation by kinases enzymes is a widespread regulatory mechanism able of rapidly altering the function of target proteins. Among these are cytochrome P450s (CYP450), a superfamily of enzymes performing the oxidation of endogenous and exogenous substrates thanks to the electron supply of a redox partner. In spite of its pivotal role, the molecular mechanism by which phosphorylation modulates CYP450s metabolism remains elusive. Here by performing microsecond-long all-atom molecular dynamics simulations, we disclose how phosphorylation regulates estrogen biosynthesis, catalyzed by the Human Aromatase (HA) enzyme. Namely, we unprecedentedly propose that HA phosphorylation at Y361 markedly stabilizes its adduct with the flavin mononucleotide domain of CYP450s reductase (CPR), the redox partner of microsomal CYP450s, and a variety of other proteins. With CPR present at physiological conditions in a limiting ratio with respect to its multiple oxidative partners, the enhanced stability of the CPR/HA adduct may favor HA in the competition with the other proteins requiring CPR's electron supply, ultimately facilitating the electron transfer and estrogen biosynthesis. As a result, our work elucidates at atomic-level the post-translational regulation of CYP450s catalysis. Given the potential for rational clinical management of diseases associated with steroid metabolism disorders, unraveling this mechanism is of utmost importance, and raises the intriguing perspective of exploiting this knowledge to devise novel therapies.
Collapse
Affiliation(s)
- Ida Ritacco
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| | - Angelo Spinello
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| | - Emiliano Ippoliti
- IAS-5/INM-9 Computational Biomedicine Institute and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Straße , 52425 Jülich , Germany
| | - Alessandra Magistrato
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| |
Collapse
|
14
|
The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation. Catalysts 2019. [DOI: 10.3390/catal9010081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytochromes P450 (CYP450s) promote the biosynthesis of steroid hormones with major impact on the onset of diseases such as breast and prostate cancers. By merging distinct functions into the same catalytic scaffold, steroidogenic CYP450s enhance complex chemical transformations with extreme efficiency and selectivity. Mammalian CYP450s and their redox partners are membrane-anchored proteins, dynamically associating to form functional machineries. Mounting evidence signifies that environmental factors are strictly intertwined with CYP450s catalysis. Atomic-level simulations have the potential to provide insights into the catalytic mechanism of steroidogenic CYP450s and on its regulation by environmental factors, furnishing information often inaccessible to experimental means. In this review, after an introduction of computational methods commonly employed to tackle these systems, we report the current knowledge on three steroidogenic CYP450s—CYP11A1, CYP17A1, and CYP19A1—endowed with multiple catalytic functions and critically involved in cancer onset. In particular, besides discussing their catalytic mechanisms, we highlight how the membrane environment contributes to (i) regulate ligand channeling through these enzymes, (ii) modulate their interactions with specific protein partners, (iii) mediate post-transcriptional regulation induced by phosphorylation. The results presented set the basis for developing novel therapeutic strategies aimed at fighting diseases originating from steroid metabolism dysfunction.
Collapse
|
15
|
Li L, Liu S, Liu L, Ma Z, Feng M, Ye C, Zhou W, Wang Y, Liu L, Wang F, Yu L, Zhou F, Xiang Y, Huang S, Fu Q, Zhang Q, Gao D, Yu Z. Impact of phosphorylated insulin-like growth factor-1 receptor on the outcome of breast cancer patients and the prognostic value of its alteration during neoadjuvant chemotherapy. Exp Ther Med 2018; 16:2949-2959. [PMID: 30233667 PMCID: PMC6143873 DOI: 10.3892/etm.2018.6584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
The expression of insulin-like growth factor-1 receptor (IGF-1R), which is involved in the genesis and progression of breast cancer, is thought to be associated with the overall survival (OS) of patients. However, the predictive and prognostic significance of the IGF-1R expression in breast cancer remains controversial. The present study aimed to identify the factors associated with the levels of phosphorylated (p)-IGF-1R in breast cancer, their impact on the outcomes of breast cancer patients, and the prognostic value of alterations of p-IGF-1R during neoadjuvant chemotherapy (NAC). The present study included 348 female breast cancer patients whose paraffin-embedded tumor tissue sections had been collected by biopsy and/or resection, among which the pre-NAC and post-NAC sections were available from 40 patients. Human epidermal growth factor receptor 2 (HER2) positivity and molecular subtype were significantly associated with the presence of p-IGF-1R in the tumor tissue (P<0.05). Patients with p-IGF-1R present in the tumor tissue had a shorter OS (P=0.003). The p-IGF-1R levels in the tumor after NAC differed significantly from those prior to NAC (P=0.005); however, this alteration in p-IGF-1R levels was not associated with a shorter OS. In parallel with HER2, p-IGF-1R appears to be a promising indicator for predicting clinical outcomes and may be an attractive target for improving the efficacy of antitumor therapy, particularly for patients with HER2-negative, estrogen receptor-positive and luminal B tumors.
Collapse
Affiliation(s)
- Liang Li
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuchen Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Man Feng
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongjiu Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lu Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qinye Fu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Zhang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dezong Gao
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
16
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Patel S. Breast cancer: Lesser-known facets and hypotheses. Biomed Pharmacother 2017; 98:499-506. [PMID: 29287197 DOI: 10.1016/j.biopha.2017.12.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common cancer in females. The deteriorating environment, and lifestyle flaws are raising the frequency of this cancer. Existing therapies are not universally-effective, and they cause side effects, relapses, and high mortality rate. Alternative medications may be milder, but are less effective or are inadequate for a complex disease like the breast cancer. So, it requires the understanding that drugs are not the solution of this cancer, but prevention is the sustainable solution. In the past decades, an enormous quantum of insights on this disease has been obtained. A lifestyle based on the template of estrogenic compounds and, the resultant endocrine disruption, and acidosis, is elevating aromatase level, promoting the deleterious forms of estrogen, and inducing epithelial proliferation. This review provids a holistic account of breast cancer as a inflammatory endocrinopathy, and how it can be curbed by discipline, and awareness.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
18
|
Liu CY, Wu CY, Petrossian K, Huang TT, Tseng LM, Chen S. Treatment for the endocrine resistant breast cancer: Current options and future perspectives. J Steroid Biochem Mol Biol 2017; 172:166-175. [PMID: 28684381 DOI: 10.1016/j.jsbmb.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/31/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Endocrine resistance remains a challenge and an unmet need for managing hormone receptor-positive breast cancer. The mechanisms of endocrine resistance are multifaceted and are likely to evolve over time following various single or combination therapies. The purpose of this review article is to provide general understanding of molecular basis of endocrine resistance of breast cancer and to offer comprehensive review on current treatment options and potential new treatment strategies for endocrine resistant breast cancers. Last but not the least, we discuss current challenges and future directions for management of endocrine resistant breast cancers.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yun Wu
- Division of Medical Oncology, Department of Oncology, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, United States
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, United States.
| |
Collapse
|
19
|
Fragrance compounds: The wolves in sheep’s clothings. Med Hypotheses 2017; 102:106-111. [DOI: 10.1016/j.mehy.2017.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 12/31/2022]
|
20
|
Chan HJ, Petrossian K, Chen S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol 2016; 161:73-83. [PMID: 26277097 PMCID: PMC4752924 DOI: 10.1016/j.jsbmb.2015.07.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
Aromatase and estrogen receptor α (ER) are two key proteins for the proliferation of endocrine-responsive and -resistant breast cancers. Aromatase is an enzyme involved in the conversion of androgen (such as testosterone) to estrogen (such as 17β-estradiol). It is also a very effective therapeutic target for the treatment of endocrine-responsive breast cancer. Comparing endocrine-responsive and -resistant breast cancer, aromatase protein levels do not change significantly. Aromatase activity; however, can be increased via PI3K/Akt/IGFR signaling pathways in endocrine resistant cells. The activity of aromatase has been reported to be modulated by phosphorylation. The ER is an important steroid nuclear receptor in the proliferation of both endocrine-responsive and -resistant cells. Although the mutation or amplification of ER can cause endocrine resistance, it is not commonly found. Some point mutations and translocation events have been characterized and shown to promote estrogen-independent growth. Phosphorylation by cross-talk with growth factor pathways is one of the main mechanisms for ligand-independent activation of ER. Taken together, both ER and aromatase are important in ER-dependent breast cancer and the development of endocrine resistance.
Collapse
Affiliation(s)
- Hei Jason Chan
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
21
|
Abstract
As prevalence of obesity continues to rise in the United States, we are beginning to elucidate the complex role of obesity-associated chronic inflammation, endocrine dysfunction, and hormone production as a driver for increased breast cancer risk. Epidemiological data suggest that obesity (BMI > 30) is associated with increased breast cancer incidence, worse prognosis, and higher mortality rates. Mechanistically, obesity and excess fat mass represent a state of chronic inflammation, insulin resistance, adipokine imbalance, and increased estrogen signaling. This pro-tumorigenic environment stimulates cancer development through abnormal growth, proliferation, and survival of mammary tissue. Importantly, obesity is a modifiable risk factor; alterations in cell proliferation, apoptosis, circulating estrogen, and insulin sensitivity are observed in response to weight loss attainable through behavior modification including dietary and exercise changes.
Collapse
Affiliation(s)
- Victoria M Gershuni
- Department of Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA 19104, USA
| | - Rexford S Ahima
- Department of Endocrinology, Diabetes and Metabolism, Division, Hospital of the University of Pennsylvania, 3400, Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Julia Tchou
- Department of Surgery Division of Endocrine and Oncologic Surgery, Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, 34th & Civic Center Blvd, 3 South, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and inflammation: new insights into breast cancer development and progression. Am Soc Clin Oncol Educ Book 2015:46-51. [PMID: 23714453 DOI: 10.14694/edbook_am.2013.33.46] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of inflammation in promoting carcinogenesis and tumor progression is well recognized. Chronic inflammation caused by a variety of infectious agents can lead to the development of several common malignancies. Similarly, inflammatory bowel disease is a well-known risk factor for colorectal cancer. Much less is known about the link between inflammation and the development of breast cancer. Recent data suggest that obesity causes both in-breast and systemic inflammation that contribute to the development and progression of breast cancer. This observation has potentially important implications in terms of prevention and treatment of breast cancer, especially given the rising worldwide overweight and obesity rates. Inflamed white adipose tissue (WAT) within the breast is associated with elevated levels of proinflammatory mediators, enhanced expression of aromatase (the rate-limiting enzyme for estrogen biosynthesis), and increased estrogen receptor-α (ER-α)-dependent gene expression. Systemic consequences of obesity including altered adipokine levels, elevated circulating estrogen levels, and insulin resistance are also believed to play a role in the pathogenesis of breast cancer. Collectively, these findings suggest a significant role for inflammation in the pathogenesis of breast cancer in obese and overweight patients.
Collapse
Affiliation(s)
- Neil M Iyengar
- From the Memorial Sloan-Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | | | | |
Collapse
|
23
|
Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and inflammation: new insights into breast cancer development and progression. AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2015. [PMID: 23714453 DOI: 10.1200/edbook_am.2013.33.46] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The importance of inflammation in promoting carcinogenesis and tumor progression is well recognized. Chronic inflammation caused by a variety of infectious agents can lead to the development of several common malignancies. Similarly, inflammatory bowel disease is a well-known risk factor for colorectal cancer. Much less is known about the link between inflammation and the development of breast cancer. Recent data suggest that obesity causes both in-breast and systemic inflammation that contribute to the development and progression of breast cancer. This observation has potentially important implications in terms of prevention and treatment of breast cancer, especially given the rising worldwide overweight and obesity rates. Inflamed white adipose tissue (WAT) within the breast is associated with elevated levels of proinflammatory mediators, enhanced expression of aromatase (the rate-limiting enzyme for estrogen biosynthesis), and increased estrogen receptor-α (ER-α)-dependent gene expression. Systemic consequences of obesity including altered adipokine levels, elevated circulating estrogen levels, and insulin resistance are also believed to play a role in the pathogenesis of breast cancer. Collectively, these findings suggest a significant role for inflammation in the pathogenesis of breast cancer in obese and overweight patients.
Collapse
Affiliation(s)
- Neil M Iyengar
- From the Memorial Sloan-Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | | | | |
Collapse
|
24
|
Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 2015; 14:43. [PMID: 25743390 PMCID: PMC4335664 DOI: 10.1186/s12943-015-0291-7] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023] Open
Abstract
IGF-1 is a potent mitogen of major importance in the mammary gland. IGF-1 binding to the cognate receptor, IGF-1R, triggers a signaling cascade leading to proliferative and anti-apoptotic events. Although many of the relevant molecular pathways and intracellular cascades remain to be elucidated, a growing body of evidence points to the important role of the IGF-1 system in breast cancer development, progression and metastasis. IGF-1 is a point of convergence for major signaling pathways implicated in breast cancer growth. In this review, we provide an overview and concise update on the function and regulation of IGF-1 as well as the role it plays in breast malignancies.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| | - Pavlos Msaouel
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| |
Collapse
|
25
|
Hayashi T, Harada N. Post-translational dual regulation of cytochrome P450 aromatase at the catalytic and protein levels by phosphorylation/dephosphorylation. FEBS J 2014; 281:4830-40. [PMID: 25158681 DOI: 10.1111/febs.13021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/31/2014] [Accepted: 08/22/2014] [Indexed: 11/27/2022]
Abstract
The post-translational regulation of aromatase has not been well characterized as compared with transcriptional regulation. Several studies of post-translational regulation have focused on decreases in catalytic activity following phosphorylation. We report here dual post-translational regulation of aromatase, at the catalytic activity and protein levels. Microsomal aromatase prepared from JEG-3 cells was rapidly inactivated and subsequently degraded in the presence of a cytosolic fraction with calcium, magnesium, and ATP. In a reconstituted system consisting of microsomal and cytosolic fractions, aromatase was protected from protein degradation by treatment with alkaline phosphatase, whereas degradation was enhanced by treatment with calcineurin inhibitors (FK506 and cyclosporin A). Furthermore, aromatase was protected from degradation by treatment with kinase inhibitors, especially the calcium/calmodulin kinase inhibitors KN62 and KN93. Similarly to the reconstituted system, aromatase in cultured JEG-3 cells was protected from degradation by KN93, whereas FK503 increased degradation in the presence of cycloheximide, although cellular aromatase mRNA levels were unchanged by these reagents. Knockdown of calcineurin and calcium/calmodulin kinase II (CaMKII) with small interfering RNAs resulted in a dose-dependent increase in aromatase degradation and protection from degradation, respectively. The cytosol fraction-dependent phosphorylation of microsomal aromatase was inhibited by calcineurin, KN62, and KN93, and promoted by CaMKII and FK506. These results indicate that aromatase is regulated acutely at the catalytic activity level and subsequently at the enzyme content level by CaMKII/calcineurin-dependent phosphorylation/dephosphorylation.
Collapse
Affiliation(s)
- Takanori Hayashi
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | |
Collapse
|
26
|
Phuong NTT, Lim SC, Kim YM, Kang KW. Aromatase induction in tamoxifen-resistant breast cancer: Role of phosphoinositide 3-kinase-dependent CREB activation. Cancer Lett 2014; 351:91-99. [PMID: 24836190 DOI: 10.1016/j.canlet.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 02/07/2023]
Abstract
Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Phuong
- College of Pharmacy, Chosun University, Gwangju 501-759, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Hanyang University, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
27
|
Dynamic regulation of steroid hormone receptor transcriptional activity by reversible SUMOylation. VITAMINS AND HORMONES 2013; 93:227-61. [PMID: 23810010 DOI: 10.1016/b978-0-12-416673-8.00008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transcription complexes containing steroid hormone receptors (SRs) have been well characterized at selected canonical target genes. More recently, the advent of whole genome technologies has allowed for complete SR transcriptome analyses in diverse cell types and in response to a variety of cellular stimuli. These types of studies have revealed little overlap between the tissue or cell type-specific transcriptomes of a given SR, suggesting that all SRs are highly context-dependent transcription factors. However, the mechanisms controlling SR promoter selectivity have not been fully elucidated. Many factors may influence SR promoter selectivity, including chromatin structure, cofactor availability, and posttranslational modifications to SRs and/or their numerous coregulators; this review focuses on the impact that covalent attachment of small ubiquitin-like modifier (SUMO) moieties to SRs (i.e., SUMOylation) have on the transcriptional regulation of SR target genes.
Collapse
|
28
|
Barone I, Giordano C, Malivindi R, Lanzino M, Rizza P, Casaburi I, Bonofiglio D, Catalano S, Andò S. Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells. Endocrinology 2012; 153:5157-66. [PMID: 22962253 DOI: 10.1210/en.2012-1561] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Local estrogen production by aromatase is an important mechanism of autocrine stimulation in hormone-dependent breast cancer. We have previously shown that 17-β estradiol (E(2)) rapidly enhances aromatase enzymatic activity through an increase of tyrosine protein phosphorylation controlled by the activity of the c-Src kinase in breast cancer cells. Here, we investigated the protein tyrosine phosphatase PTP1B (protein tyrosine phosphatase 1B) as a potential regulator of aromatase activity. We demonstrated a specific association between PTP1B and aromatase at protein-protein level and a reduction of aromatase activity in basal and E(2)-treated MCF-7 and ZR75 breast cancer cells when PTP1B was overexpressed. Indeed, a specific tyrosine phosphatase inhibitor increased basal and E(2)-induced enzymatic activity as well as tyrosine phosphorylation status of the purified aromatase protein. Moreover, E(2) through phosphatidylinositol 3 kinase/Akt activation caused a significant decrease of PTP1B catalytic activity along with an increase in its serine phosphorylation. Concomitantly, the phosphatidylinositol 3 kinase inhibitor LY294002 or a dominant negative of Akt was able to reduce the E(2) stimulatory effects on activity and tyrosine phosphorylation levels of aromatase. Taken together, our results suggest that E(2) can impair PTP1B ability to dephosphorylate aromatase, and thus it increases its enzymatic activity, creating a positive feedback mechanism for estradiol signaling in breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Departments of Cell Biology, University of Calabria, Cosenza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu D, Yang L, Li Q, Gao X, Wang F, Zhang G. Egonol gentiobioside and egonol gentiotrioside from Styrax perkinsiae promote the biosynthesis of estrogen by aromatase. Eur J Pharmacol 2012; 691:275-82. [DOI: 10.1016/j.ejphar.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
30
|
Knutson TP, Daniel AR, Fan D, Silverstein KAT, Covington KR, Fuqua SAW, Lange CA. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression. Breast Cancer Res 2012; 14:R95. [PMID: 22697792 PMCID: PMC3446358 DOI: 10.1186/bcr3211] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/21/2012] [Accepted: 06/14/2012] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. METHODS Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. RESULTS 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks these events, suggesting that SUMO modification of PR prevents interactions with mediators of early chromatin remodeling at 'closed' enhancer regions. SUMO-deficient (phospho-Ser294) PR gene signatures are significantly associated with human epidermal growth factor 2 (ERBB2)-positive luminal breast tumors and predictive of early metastasis and shortened survival. Treatment with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR target-genes and inhibited proliferation in BT-474 (estrogen receptor (ER)+/PR+/ERBB2+) breast cancer cells. CONCLUSIONS We conclude that reversible PR SUMOylation/deSUMOylation profoundly alters target gene selection in breast cancer cells. Phosphorylation-induced PR deSUMOylation favors a permissive chromatin environment via recruitment of CBP and MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (that is, derepressed) phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Andrea R Daniel
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Danhua Fan
- Biostatistics and Bioinformatics Core, Masonic Cancer Center, 425 Delaware St SE, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kevin AT Silverstein
- Biostatistics and Bioinformatics Core, Masonic Cancer Center, 425 Delaware St SE, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kyle R Covington
- Department of Medicine, Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Suzanne AW Fuqua
- Department of Medicine, Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Carol A Lange
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| |
Collapse
|
31
|
Abrhale T, Brodie A, Sabnis G, Macedo L, Tian C, Yue B, Serrero G. GP88 (PC-Cell Derived Growth Factor, progranulin) stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells. BMC Cancer 2011; 11:231. [PMID: 21658239 PMCID: PMC3129588 DOI: 10.1186/1471-2407-11-231] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/09/2011] [Indexed: 01/13/2023] Open
Abstract
Background Aromatase inhibitors (AI) that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+) breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88), also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.
Collapse
Affiliation(s)
- Tesfom Abrhale
- A&G Pharmaceutical Inc, 9130 Red Branch Rd, Columbia, MD, USA
| | | | | | | | | | | | | |
Collapse
|