1
|
Mianesaz H, Göczi L, Nagy G, Póliska S, Fadel L, Bojcsuk D, Penyige A, Szirák K, AlHaman F, Nagy L, Vámosi G, Széles L. Genomic regions occupied by both RARα and VDR are involved in the convergence and cooperation of retinoid and vitamin D signaling pathways. Nucleic Acids Res 2025; 53:gkaf230. [PMID: 40167329 PMCID: PMC11959543 DOI: 10.1093/nar/gkaf230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/03/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Retinoic acid receptors (RARs) and the vitamin D receptor (VDR) regulate distinct but overlapping gene sets in multiple cell types. The abundance and characteristics of regulatory regions, occupied by both RARs and VDR are largely unexplored. We used global approaches (ChIP-seq, RNA-seq, and ATAC-seq) and bioinformatics tools to map and characterize common binding regions of RARα and VDR in differentiated human THP-1 cells. We found that the cistromes of ligand-activated RARα and VDR largely overlapped, and their agonists (AM580 and calcitriol) co-regulated several genes, often cooperatively. Common binding regions were frequently (but not exclusively) annotated with co-regulated genes and exhibited increased MED1 occupancy upon ligand stimulation, suggesting their involvement in gene regulation. Chromatin accessibility was typically higher in the common regions than in regions occupied exclusively by RARα or VDR. DNA response elements for RARα (DR1/2/5) and VDR (DR3) were enriched in the common regions, albeit the co-occurrence of the two types of canonical motifs was low (8.4%), suggesting that "degenerate" DR1/2/5 and DR3 motifs or other sequences could mediate the binding. In summary, common binding regions of RARα and VDR are at the crossroads of the retinoid and vitamin D pathways, playing important roles in their convergence and cooperation.
Collapse
Affiliation(s)
- Hamidreza Mianesaz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Loránd Göczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Dóra Bojcsuk
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Krisztina Szirák
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Farah AlHaman
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida 33701, United States
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lajos Széles
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| |
Collapse
|
2
|
Parenti M, Melough MM, Lapehn S, MacDonald J, Bammler T, Firsick EJ, Choi HY, Derefinko KJ, Enquobahrie DA, Carroll KN, LeWinn KZ, Bush NR, Zhao Q, Sathyanarayana S, Paquette AG. Associations Between Prenatal Vitamin D and Placental Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593571. [PMID: 38765981 PMCID: PMC11100832 DOI: 10.1101/2024.05.10.593571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Vitamin D is a hormone regulating gene transcription. Prenatal vitamin D has been linked to immune and vascular function in the placenta, a key organ of pregnancy. To date, studies of vitamin D and placental gene expression have focused on a limited number of candidate genes. Transcriptome-wide RNA sequencing can provide a more complete representation of the placental effects of vitamin D. Objective We investigated the association between prenatal vitamin D levels and placental gene expression in a large, prospective pregnancy cohort. Methods Participants were recruited in Shelby County, Tennessee in the Conditions Affecting Neurocognitive Development and Learning in Early childhood (CANDLE) study. Vitamin D level (plasma total 25-hydroxyvitatmin D, [25(OH)D]) was measured at mid-pregnancy (16-28 weeks' gestation) and delivery. Placenta samples were collected at birth. RNA was isolated and sequenced. We identified differentially expressed genes (DEGs) using adjusted linear regression models. We also conducted weighted gene co-expression network analysis (WGCNA). Results The median 25(OH)D of participants was 21.8 ng/mL at mid-pregnancy (N=774, IQR: 15.4-26.5 ng/mL) and 23.6 ng/mL at delivery (N=753, IQR: 16.8-29.1 ng/mL). Placental expression of 25 DEGs was associated with 25(OH)D at mid-pregnancy, but no DEG was associated with 25(OH)D at delivery. DEGs were related to energy metabolism, cytoskeletal function, and RNA transcription. Using WGCNA, we identified 2 gene modules whose expression was associated with 25(OH)D at mid-pregnancy and 1 module associated with 25(OH)D at delivery. These modules were enriched for genes related to mitochondrial and cytoskeletal function, and were regulated by transcription factors including ARNT2, BHLHE40, FOSL2, JUND, and NFKB1. Conclusions Our results indicate that 25(OH)D during mid-pregnancy, but not at delivery, is associated with placental gene expression at birth. Future research is needed to investigate a potential role of vitamin D in programming placental mitochondrial metabolism, intracellular transport, and transcriptional regulation during pregnancy.
Collapse
Affiliation(s)
- Mariana Parenti
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Melissa M. Melough
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, United States
| | - Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Evan J. Firsick
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Hyo Young Choi
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Karen J. Derefinko
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | | | - Kecia N. Carroll
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole R. Bush
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Center for Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Podleśny-Drabiniok A, Novikova G, Liu Y, Dunst J, Temizer R, Giannarelli C, Marro S, Kreslavsky T, Marcora E, Goate AM. BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer's disease and other disorders of lipid-rich tissues. Nat Commun 2024; 15:2058. [PMID: 38448474 PMCID: PMC10917780 DOI: 10.1038/s41467-024-46315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Genetic and experimental evidence suggests that Alzheimer's disease (AD) risk alleles and genes may influence disease susceptibility by altering the transcriptional and cellular responses of macrophages, including microglia, to damage of lipid-rich tissues like the brain. Recently, sc/nRNA sequencing studies identified similar transcriptional activation states in subpopulations of macrophages in aging and degenerating brains and in other diseased lipid-rich tissues. We collectively refer to these subpopulations of microglia and peripheral macrophages as DLAMs. Using macrophage sc/nRNA-seq data from healthy and diseased human and mouse lipid-rich tissues, we reconstructed gene regulatory networks and identified 11 strong candidate transcriptional regulators of the DLAM response across species. Loss or reduction of two of these transcription factors, BHLHE40/41, in iPSC-derived microglia and human THP-1 macrophages as well as loss of Bhlhe40/41 in mouse microglia, resulted in increased expression of DLAM genes involved in cholesterol clearance and lysosomal processing, increased cholesterol efflux and storage, and increased lysosomal mass and degradative capacity. These findings provide targets for therapeutic modulation of macrophage/microglial function in AD and other disorders affecting lipid-rich tissues.
Collapse
Affiliation(s)
- Anna Podleśny-Drabiniok
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gloriia Novikova
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- OMNI Bioinformatics Department, Genentech, Inc., South San Francisco, CA, USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rose Temizer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Samuele Marro
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edoardo Marcora
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Alison Mary Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Podlesny-Drabiniok A, Novikova G, Liu Y, Dunst J, Temizer R, Giannarelli C, Marro S, Kreslavsky T, Marcora E, Goate AM. BHLHE40/41 regulate macrophage/microglia responses associated with Alzheimer's disease and other disorders of lipid-rich tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528372. [PMID: 36824752 PMCID: PMC9948946 DOI: 10.1101/2023.02.13.528372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Genetic and experimental evidence strongly implicates myeloid cells in the etiology of AD and suggests that AD-associated alleles and genes may modulate disease risk by altering the transcriptional and cellular responses of macrophages (like microglia) to damage of lipid-rich tissues (like the brain). Specifically, recent single-cell/nucleus RNA sequencing (sc/nRNA-seq) studies identified a transcriptionally distinct state of subsets of macrophages in aging or degenerating brains (usually referred to as disease-associated microglia or DAM) and in other diseased lipid-rich tissues (e.g., obese adipose tissue, fatty liver, and atherosclerotic plaques). We collectively refer to these subpopulations as lipid-associated macrophages or LAMs. Importantly, this particular activation state is characterized by increased expression of genes involved in the phagocytic clearance of lipid-rich cellular debris (efferocytosis), including several AD risk genes. Methods We used sc/nRNA-seq data from human and mouse microglia from healthy and diseased brains and macrophages from other lipid-rich tissues to reconstruct gene regulatory networks and identify transcriptional regulators whose regulons are enriched for LAM response genes (LAM TFs) across species. We then used gene knock-down/knock-out strategies to validate some of these LAM TFs in human THP-1 macrophages and iPSC-derived microglia in vitro, as well as mouse microglia in vivo. Results We nominate 11 strong candidate LAM TFs shared across human and mouse networks (BHLHE41, HIF1A, ID2, JUNB, MAF, MAFB, MEF2A, MEF2C, NACA, POU2F2 and SPI1). We also demonstrate a strong enrichment of AD risk alleles in the cistrome of BHLHE41 (and its close homolog BHLHE40), thus implicating its regulon in the modulation of disease susceptibility. Loss or reduction of BHLHE40/41 expression in human THP-1 macrophages and iPSC-derived microglia, as well as loss of Bhlhe40/41 in mouse microglia led to increased expression of LAM response genes, specifically those involved in cholesterol clearance and lysosomal processing, with a concomitant increase in cholesterol efflux and storage, as well as lysosomal mass and degradative capacity. Conclusions Taken together, this study nominates transcriptional regulators of the LAM response, experimentally validates BHLHE40/41 in human and mouse macrophages/microglia, and provides novel targets for therapeutic modulation of macrophage/microglia function in AD and other disorders of lipid-rich tissues.
Collapse
Affiliation(s)
- Anna Podlesny-Drabiniok
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gloriia Novikova
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
- OMNI Bioinformatics Department and Neuroscience Department, Genentech, Inc., South San Francisco, CA, USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rose Temizer
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Giannarelli
- Department of Medicine (C.G.), Cardiology, NYU Grossman School of Medicine
- Department of Pathology (C.G.), Cardiology, NYU Grossman School of Medicine
| | - Samuele Marro
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edoardo Marcora
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alison Mary Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Impact of the Voltage-Gated Calcium Channel Antagonist Nimodipine on the Development of Oligodendrocyte Precursor Cells. Int J Mol Sci 2023; 24:ijms24043716. [PMID: 36835129 PMCID: PMC9960570 DOI: 10.3390/ijms24043716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While most of the current treatment strategies focus on immune cell regulation, except for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine, an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data indicate that nimodipine does not have any effect on myelin-related gene and protein expression. Furthermore, nimodipine treatment did not result in any morphological changes in these cells. However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control. Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number of mature oligodendrocytes (* p≤ 0.05). Taken together, nimodipine seems to have different positive effects on OPCs and mature oligodendrocytes.
Collapse
|
6
|
Recent Advances in Chronotherapy Targeting Respiratory Diseases. Pharmaceutics 2021; 13:pharmaceutics13122008. [PMID: 34959290 PMCID: PMC8704788 DOI: 10.3390/pharmaceutics13122008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory diseases contribute to a significant percentage of mortality and morbidity worldwide. The circadian rhythm is a natural biological process where our bodily functions align with the 24 h oscillation (sleep-wake cycle) process and are controlled by the circadian clock protein/gene. Disruption of the circadian rhythm could alter normal lung function. Chronotherapy is a type of therapy provided at specific time intervals based on an individual's circadian rhythm. This would allow the drug to show optimum action, and thereby modulate its pharmacokinetics to lessen unwanted or unintended effects. In this review, we deliberated on the recent advances employed in chrono-targeted therapeutics for chronic respiratory diseases.
Collapse
|
7
|
Ubanako P, Xelwa N, Ntwasa M. LPS induces inflammatory chemokines via TLR-4 signalling and enhances the Warburg Effect in THP-1 cells. PLoS One 2019; 14:e0222614. [PMID: 31560702 PMCID: PMC6764657 DOI: 10.1371/journal.pone.0222614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023] Open
Abstract
The Warburg Effect has emerged as a potential drug target because, in some cancer cell lines, it is sufficient to subvert it in order to kill cancer cells. It has also been shown that the Warburg Effect occurs in innate immune cells upon infection. Innate immune cells play critical roles in the tumour microenvironment but the Warburg Effect is not fully understood in monocytes. Furthermore, it is important to understand the impact of infections on key players in the tumour microenvironment because inflammatory conditions often precede carcinogenesis and mutated oncogenes induce inflammation. We investigated the metabolic programme in the acute monocytic leukaemia cell line, THP-1 in the presence and absence of lipopolysaccharide, mimicking bacterial infections. We found that stimulation of THP-1 cells by LPS induces a subset of pro-inflammatory chemokines and enhances the Warburg Effect. Surprisingly, perturbation of the Warburg Effect in these cells does not lead to cell death in contrast to what was observed in non-myeloid cancer cell lines in a previous study. These findings indicate that the Warburg Effect and inflammation are activated by bacterial lipopolysaccharide and may have a profound influence on the microenvironment.
Collapse
Affiliation(s)
- Philemon Ubanako
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Ntombikayise Xelwa
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Monde Ntwasa
- Department of Life & Consumer Sciences, University of South Africa, Florida, Johannesburg, Republic of South Africa
| |
Collapse
|
8
|
Nurminen V, Seuter S, Carlberg C. Primary Vitamin D Target Genes of Human Monocytes. Front Physiol 2019; 10:194. [PMID: 30890957 PMCID: PMC6411690 DOI: 10.3389/fphys.2019.00194] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The molecular basis of vitamin D signaling implies that the metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the secosteroid vitamin D3 activates the transcription factor vitamin D receptor (VDR), which in turn modulates the expression of hundreds of primary vitamin D target genes. Since the evolutionary role of nuclear receptors, such as VDR, was the regulation of cellular metabolism, the control of calcium metabolism became the primary function of vitamin D and its receptor. Moreover, the nearly ubiquitous expression of VDR enabled vitamin D to acquire additional physiological functions, such as the support of the innate immune system in its defense against microbes. Monocytes and their differentiated phenotypes, macrophages and dendritic cells, are key cell types of the innate immune system. Vitamin D signaling was most comprehensively investigated in THP-1 cells, which are an established model of human monocytes. This includes the 1,25(OH)2D3-modulated cistromes of VDR, the pioneer transcription factors PU.1 and CEBPA and the chromatin modifier CTCF as well as of the histone markers of promoter and enhancer regions, H3K4me3 and H3K27ac, respectively. These epigenome-wide datasets led to the development of our chromatin model of vitamin D signaling. This review discusses the mechanistic basis of 189 primary vitamin D target genes identified by transcriptome-wide analysis of 1,25(OH)2D3-stimulated THP-1 cells and relates the epigenomic basis of four different regulatory scenarios to the physiological functions of the respective genes.
Collapse
Affiliation(s)
- Veijo Nurminen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sabine Seuter
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Long Y, Tsai WB, Chang JT, Estecio M, Wangpaichitr M, Savaraj N, Feun LG, Chen HHW, Kuo MT. Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation. Oncotarget 2018; 7:82658-82670. [PMID: 27765932 PMCID: PMC5347722 DOI: 10.18632/oncotarget.12308] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression. Moreover, it was reported that cisplatin suppresses ASS1 expression through ASS1 promoter methylation, leading to synthetic lethality to ADI-PEG20 treatment. We report here that cisplatin supppresses ASS1 expression is due to upregulation of HIF-1α and downregulation of c-Myc, which function as negative and positive regulators of ASS1 expression, respectively, by reciprocal bindings to the ASS1 promoter. In contrast, we found that Aza-dC induces ASS1 expression by downregulation of HIF-1α but upregulation of c-Myc. We further demonstrated that the clock protein DEC1 is the master regulator of HIF-1α and c-Myc that regulate ASS1. cDDP upregulates DEC1, whereas Aza-dC suppresses its expression. Using two proteasomal inhibitors bortezomib and carfilzomib which induce HIF-1α accumulation, we further demonstrated that HIF-1α is involved in ASS1 silencing for the maintenance of Arg auxotrophy for targeted Arg-starvation therapy.
Collapse
Affiliation(s)
- Yan Long
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen-Bin Tsai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marcos Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Medhi Wangpaichitr
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Naramol Savaraj
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Lynn G Feun
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Helen H W Chen
- Department of Radiation Oncology, National Cheng Kung University, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma. Oncotarget 2018; 7:68360-68370. [PMID: 27588392 PMCID: PMC5356561 DOI: 10.18632/oncotarget.11721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/20/2016] [Indexed: 01/09/2023] Open
Abstract
Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome.
Collapse
|
11
|
Hassan N, McCarville K, Morinaga K, Mengatto CM, Langfelder P, Hokugo A, Tahara Y, Colwell CS, Nishimura I. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells. PLoS One 2017; 12:e0183359. [PMID: 28817668 PMCID: PMC5560683 DOI: 10.1371/journal.pone.0183359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.
Collapse
Affiliation(s)
- Nathaniel Hassan
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Kirstin McCarville
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Kenzo Morinaga
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, United States of America
- Department of Oral Rehabilitation, Section of Oral Implantology, Fukuoka Dental College, Fukuoka, Japan
| | - Cristiane M. Mengatto
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Department of Conservative Dentistry, School of Dentistry Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Plastic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Yu Tahara
- Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Christopher S. Colwell
- Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Global gene regulation during activation of immunoglobulin class switching in human B cells. Sci Rep 2016; 6:37988. [PMID: 27897229 PMCID: PMC5126563 DOI: 10.1038/srep37988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) to IgE is a tightly regulated process central to atopic disease. To profile the B-cell transcriptional responses underlying the activation of the germinal centre activities leading to the generation of IgE, naïve human B-cells were stimulated with IL-4 and anti-CD40. Gene expression and alternative splicing were profiled over 12 days using the Affymetrix Human Exon 1.0 ST Array. A total of 1,399 genes, forming 13 temporal profiles were differentially expressed. CCL22 and CCL17 were dramatically induced but followed a temporal trajectory distinct from classical mediators of isotype switching. AICDA, NFIL3, IRF4, XBP1 and BATF3 shared a profile with several genes involved in innate immunity, but with no recognised role in CSR. A transcription factor BHLHE40 was identified at the core of this profile. B-cell activation was also accompanied by variation in exon retention affecting >200 genes including CCL17. The data indicate a circadian component and central roles for the Th2 chemokines CCL22 and CCL17 in the activation of CSR.
Collapse
|
13
|
Transcriptional regulator Bhlhe40 works as a cofactor of T-bet in the regulation of IFN-γ production in iNKT cells. Proc Natl Acad Sci U S A 2016; 113:E3394-402. [PMID: 27226296 DOI: 10.1073/pnas.1604178113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate-like T cells that act as important mediators of immune responses. In particular, iNKT cells have the ability to immediately produce large amounts of IFN-γ upon activation and thus initiate immune responses in various pathological conditions. However, molecular mechanisms that control IFN-γ production in iNKT cells are not fully understood. Here, we report that basic helix-loop-helix transcription factor family, member e40 (Bhlhe40), is an important regulator for IFN-γ production in iNKT cells. Bhlhe40 is highly expressed in stage 3 thymic iNKT cells and iNKT1 subsets, and the level of Bhlhe40 mRNA expression is correlated with Ifng mRNA expression in the resting state. Although Bhlhe40-deficient mice show normal iNKT cell development, Bhlhe40-deficient iNKT cells show significant impairment of IFN-γ production and antitumor effects. Bhlhe40 alone shows no significant effects on Ifng promoter activities but contributes to enhance T-box transcription factor Tbx21 (T-bet)-mediated Ifng promoter activation. Chromatin immunoprecipitation analysis revealed that Bhlhe40 accumulates in the T-box region of the Ifng locus and contributes to histone H3-lysine 9 acetylation of the Ifng locus, which is impaired without T-bet conditions. These results indicate that Bhlhe40 works as a cofactor of T-bet for enhancing IFN-γ production in iNKT cells.
Collapse
|
14
|
Gutierrez-Monreal MA, Cuevas-Diaz Duran R, Moreno-Cuevas JE, Scott SP. A role for 1α,25-dihydroxyvitamin d3 in the expression of circadian genes. J Biol Rhythms 2014; 29:384-8. [PMID: 25231949 DOI: 10.1177/0748730414549239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The active form of vitamin D, 1α,25-(OH)2D3, has been associated with metabolism control, cell growth, differentiation, antiproliferation, apoptosis, and adaptive/innate immune responses, besides its functions in the integrity of bone and calcium homeostasis. The circadian rhythm regulates a variety of biological processes, many of them related to the functions associated with 1α,25-(OH)2D3. In the present study, we determine whether 1α,25-(OH)2D3 alters the expression of circadian genes in adipose-derived stem cells (ADSCs). The effect of 1α,25-(OH)2D3 on the expression of circadian genes BMAL1 and PER2 was measured by qPCR, over a 60-h period every 4 h, in serum shocked ADSCs, serum shocked ADSCs supplemented with 1α,25-(OH)2D3, and ADSCs under the presence of only 1α,25-(OH)2D3. The results showed that 1α,25-(OH)2D3 was able to synchronize circadian clock gene expression in ADSCs. The expression of circadian genes BMAL1 and PER2 in ADSCs that contained only 1α,25-(OH)2D3 has a profile similar to that found in the ADSCs synchronized by a serum shock. The results suggest an important role of 1α,25-(OH)2D3 in the regulation of the molecular clock.
Collapse
Affiliation(s)
| | | | | | - Sean-Patrick Scott
- Cátedra de Hematología y Cáncer, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| |
Collapse
|
15
|
Preston MA, Macklin WB. Zebrafish as a model to investigate CNS myelination. Glia 2014; 63:177-93. [PMID: 25263121 DOI: 10.1002/glia.22755] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems.
Collapse
Affiliation(s)
- Marnie A Preston
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
16
|
Goeman F, De Nicola F, D'Onorio De Meo P, Pallocca M, Elmi B, Castrignanò T, Pesole G, Strano S, Blandino G, Fanciulli M, Muti P. VDR primary targets by genome-wide transcriptional profiling. J Steroid Biochem Mol Biol 2014; 143:348-56. [PMID: 24726990 DOI: 10.1016/j.jsbmb.2014.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/14/2022]
Abstract
There is growing evidence that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) plays a role in breast cancer prevention and survival. It elicits a variety of antitumor activities like controlling cellular differentiation, proliferation and angiogenesis. Most of its biological effects are exerted via its nuclear receptor which acts as a transcriptional regulator. Here, we carried out a genome-wide investigation of the primary transcriptional targets of 1α,25(OH)2D3 in breast epithelial cancer cells using RNA-Seq technology. We identified early transcriptional targets of 1α,25(OH)2D3 involved in adhesion, growth regulation, angiogenesis, actin cytoskeleton regulation, hexose transport, inflammation and immunomodulation, apoptosis, endocytosis and signaling. Furthermore, we found several transcription factors to be regulated by 1α,25(OH)2D3 that subsequently amplify and diversify the transcriptional output driven by 1α,25(OH)2D3 leading finally to a growth arrest of the cells. Moreover, we could show that 1α,25(OH)2D3 elevates the trimethylation of histone H3 lysine 4 at several target gene promoters. Our present transcriptomic analysis of differential expression after 1α,25(OH)2D3 treatment provides a resource of primary 1α,25(OH)2D3 targets that might drive the antiproliferative action in breast cancer epithelial cells.
Collapse
Affiliation(s)
- Frauke Goeman
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Francesca De Nicola
- Laboratory of Epigenetic, Molecular Medicine Area, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | | | - Matteo Pallocca
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Berardino Elmi
- Laboratory of Epigenetic, Molecular Medicine Area, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | | | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics of the National Research Council and Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Maurizio Fanciulli
- Laboratory of Epigenetic, Molecular Medicine Area, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, McMaster University, Main Street West Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
17
|
Kato Y, Kawamoto T, Fujimoto K, Noshiro M. DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli. Curr Top Dev Biol 2014; 110:339-72. [PMID: 25248482 DOI: 10.1016/b978-0-12-405943-6.00010-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Daily physiological and behavioral rhythms are regulated by endogenous circadian molecular clocks. Clock proteins DEC1 (BHLHe40) and DEC2 (BHLHe41) belong to the basic helix-loop-helix protein superfamily, which contains other clock proteins CLOCK and BMAL1. DEC1 and DEC2 are induced by CLOCK:BMAL1 heterodimer via the CACGTG E-box in the promoter and, thereafter, suppress their own expression by competing with CLOCK:BMAL1 for the DNA binding. This negative feedback DEC loop together with the PER loop involving PER and CRY, the other negative clock regulators, maintains the circadian rhythm of Dec1 and Dec2 expression. DEC1 is induced by light pulse and adjusts the circadian phase of the central clock in the suprachiasmatic nucleus, whereas DEC1 upregulation by TGF-β resets the circadian phase of the peripheral clocks in tissues. Furthermore, DEC1 and DEC2 modulate the clock output signals to control circadian rhythms in behavior and metabolism. In addition to the functions in the clocks, DEC1 and DEC2 are involved in hypoxia responses, immunological reactions, and carcinogenesis. These DEC actions are mediated by the direct binding to the E-box elements in target genes or by protein-protein interactions with transcription factors such as HIF-1α, RXRα, MyoD, and STAT. Notably, numerous growth factors, hormones, and cytokines, along with ionizing radiation and DNA-damaging agents, induce Dec1 and/or Dec2 in a tissue-specific manner. These findings suggest that DEC1 and DEC2 play a critical role in animal adaptation to various environmental stimuli.
Collapse
Affiliation(s)
- Yukio Kato
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takeshi Kawamoto
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuhide Noshiro
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Ryynänen J, Carlberg C. Primary 1,25-dihydroxyvitamin D3 response of the interleukin 8 gene cluster in human monocyte- and macrophage-like cells. PLoS One 2013; 8:e78170. [PMID: 24250750 PMCID: PMC3824026 DOI: 10.1371/journal.pone.0078170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/17/2013] [Indexed: 12/15/2022] Open
Abstract
Genome-wide analysis of vitamin D receptor (VDR) binding sites in THP-1 human monocyte-like cells highlighted the interleukin 8 gene, also known as chemokine CXC motif ligand 8 (CXCL8). CXCL8 is a chemotactic cytokine with important functions during acute inflammation as well as in the context of various cancers. The nine genes of the CXCL cluster and the strong VDR binding site close to the CXCL8 gene are insulated from neighboring genes by CCCTC-binding factor (CTCF) binding sites. Only CXCL8, CXCL6 and CXCL1 are expressed in THP-1 cells, but all three are up-regulated primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes. Formaldehyde-assisted isolation of regulatory elements sequencing analysis of the whole CXCL cluster demonstrated 1,25(OH)2D3-dependent chromatin opening exclusively for the VDR binding site. In differentiated THP-1 cells the CXCL8 gene showed a 33-fold higher basal expression, but is together with CXCL6 and CXCL1 still a primary 1,25(OH)2D3 target under the control of the same genomic VDR binding site. In summary, both in undifferentiated and differentiated THP-1 cells the genes CXCL8, CXCL6 and CXCL1 are under the primary control of 1,25(OH)2D3 and its receptor VDR. Our observation provides further evidence for the immune-related functions of vitamin D.
Collapse
Affiliation(s)
- Jussi Ryynänen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
19
|
Ryynänen J, Seuter S, Campbell MJ, Carlberg C. Gene regulatory scenarios of primary 1,25-dihydroxyvitamin d3 target genes in a human myeloid leukemia cell line. Cancers (Basel) 2013; 5:1221-41. [PMID: 24202443 PMCID: PMC3875937 DOI: 10.3390/cancers5041221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140-170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH)2D3-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens.
Collapse
Affiliation(s)
- Jussi Ryynänen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland; E-Mails: (J.R.), (S.S.)
| | - Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland; E-Mails: (J.R.), (S.S.)
| | - Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mail:
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland; E-Mails: (J.R.), (S.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +358-40-355-3062
| |
Collapse
|