1
|
Colicino E, Ferrari F, Cowell W, Niedzwiecki MM, Foppa Pedretti N, Joshi A, Wright RO, Wright RJ. Non-linear and non-additive associations between the pregnancy metabolome and birthweight. ENVIRONMENT INTERNATIONAL 2021; 156:106750. [PMID: 34256302 PMCID: PMC9244839 DOI: 10.1016/j.envint.2021.106750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Birthweight is an indicator of fetal growth and environmental-related alterations of birthweight have been linked with multiple disorders and conditions progressing into adulthood. Although a few studies have assessed the association between birthweight and the totality of exogenous exposures and their downstream molecular responses in maternal urine and cord blood; no prior research has considered a) the maternal serum prenatal metabolome, which is enriched for hormones, and b) non-linear and synergistic associations among exposures. METHODS We measured the maternal serum metabolome during pregnancy using an untargeted metabolomics approach and birthweight for gestational age (BWGA) z-score in 410 mother-child dyads enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort. We leveraged a Bayesian factor analysis for interaction to select the most important metabolites associated with BWGA z-score and to evaluate their linear, non-linear and non-additive associations. We also assessed the primary biological functions of the identified proteins using the MetaboAnalyst, a centralized repository of curated functional information. We compared our findings with those of a traditional metabolite-wide association study (MWAS) in which metabolites are individually associated with BWGA z-score. RESULTS Among 1110 metabolites, 46 showed evidence of U-shape associations with BWGA z-score. Most of the identified metabolites (85%) were lipids primarily enriched for pathways central to energy production, immune function, and androgen and estrogen metabolism, which are essential for pregnancy and parturition processes. Metabolites within the same class, i.e. steroids and phospholipids, showed synergistic relationships with each other. CONCLUSIONS Our results support that the aspects of the maternal metabolome during pregnancy contribute linearly, non-linearly and synergistically to variation in newborn birthweight.
Collapse
Affiliation(s)
- E Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - F Ferrari
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - W Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N Foppa Pedretti
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Joshi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Schiffer L, Barnard L, Baranowski ES, Gilligan LC, Taylor AE, Arlt W, Shackleton CHL, Storbeck KH. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J Steroid Biochem Mol Biol 2019; 194:105439. [PMID: 31362062 PMCID: PMC6857441 DOI: 10.1016/j.jsbmb.2019.105439] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Advances in technology have allowed for the sensitive, specific, and simultaneous quantitative profiling of steroid precursors, bioactive steroids and inactive metabolites, facilitating comprehensive characterization of the serum and urine steroid metabolomes. The quantification of steroid panels is therefore gaining favor over quantification of single marker metabolites in the clinical and research laboratories. However, although the biochemical pathways for the biosynthesis and metabolism of steroid hormones are now well defined, a gulf still exists between this knowledge and its application to the measured steroid profiles. In this review, we present an overview of steroid hormone biosynthesis and metabolism by the liver and peripheral tissues, specifically highlighting the pathways linking and differentiating the serum and urine steroid metabolomes. A brief overview of the methodology used in steroid profiling is also provided.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Lise Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elizabeth S Baranowski
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; Department of Paediatric Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust & University of Birmingham, Birmingham, UK
| | - Cedric H L Shackleton
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
3
|
Honour JW, Conway E, Hodkinson R, Lam F. The evolution of methods for urinary steroid metabolomics in clinical investigations particularly in childhood. J Steroid Biochem Mol Biol 2018; 181:28-51. [PMID: 29481855 DOI: 10.1016/j.jsbmb.2018.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
The metabolites of cortisol, and the intermediates in the pathways from cholesterol to cortisol and the adrenal sex steroids can be analysed in a single separation of steroids by gas chromatography (GC) coupled to MS to give a urinary steroid profile (USP). Steroids individually and in profile are now commonly measured in plasma by liquid chromatography (LC) coupled with MS/MS. The steroid conjugates in urine can be determined after hydrolysis and derivative formation and for the first time without hydrolysis using GC-MS, GC-MS/MS and liquid chromatography with mass spectrometry (LC-MS/MS). The evolution of the technology, practicalities and clinical applications are examined in this review. The patterns and quantities of steroids changes through childhood. Information can be obtained on production rates, from which children with steroid excess and deficiency states can be recognised when presenting with obesity, adrenarche, adrenal suppression, hypertension, adrenal tumours, intersex condition and early puberty, as examples. Genetic defects in steroid production and action can be detected by abnormalities from the GC-MS of steroids in urine. New mechanisms of steroid synthesis and metabolism have been recognised through steroid profiling. GC with tandem mass spectrometry (GC-MS/MS) has been used for the tentative identification of unknown steroids in urine from newborn infants with congenital adrenal hyperplasia. Suggestions are made as to areas for future research and for future applications of steroid profiling. As routine hospital laboratories become more familiar with the problems of chromatographic and MS analysis they can consider steroid profiling in their test repertoire although with LC-MS/MS of urinary steroids this is unlikely to become a routine test because of the availability, cost and purity of the internal standards and the complexity of data interpretation. Steroid profiling with quantitative analysis by mass spectrometry (MS) after chromatography now provides the most versatile of tests of adrenal function in childhood.
Collapse
Affiliation(s)
- John W Honour
- Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK.
| | - E Conway
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - R Hodkinson
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - F Lam
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| |
Collapse
|
4
|
Abstract
Urine is a biological matrix that contains hundreds of metabolic end products which constitute the urinary metabolome. The development and advances on LC-MS/MS have revolutionized the analytical study of biomolecules by enabling their accurate identification and quantification in an unprecedented manner. Nowadays, LC-MS/MS is helping to unveil the complexity of urine metabolome, and the results obtained have multiple biomedical applications. This review focuses on the targeted LC-MS/MS analysis of the urine metabolome. In the first part, we describe general considerations (from sample collection to quantitation) required for a proper targeted metabolic analysis. In the second part, we address the urinary analysis and recent applications of four relevant families: amino acids, catecholamines, lipids and steroids.
Collapse
|
5
|
Robles J, Marcos J, Renau N, Garrostas L, Segura J, Ventura R, Barceló B, Barceló A, Pozo OJ. Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry. Talanta 2017; 169:20-29. [PMID: 28411812 DOI: 10.1016/j.talanta.2017.03.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
Abstract
A method for the quantitation of 22 urinary steroids (androgens, estrogens and the main pregnenolone and progesterone metabolites) by means of gas chromatography tandem mass spectrometry using a triple quadrupole analyzer has been developed. Two different enzymatic hydrolysis protocols were investigated; one capable of releasing steroids present as both sulfates and glucuronides (total fraction), and another with β-glucuronidase activity only. After selecting adequate internal standards and choosing the optimal instrumental parameters, i.e. chromatographic separation and ion transition conditions, the method was fully validated using both hydrolysis protocols. The method was shown to be linear (r >0.99) in the range of endogenous concentrations for all studied steroids with extraction recoveries higher than 80%. The use of labeled internal standards allowed for both a correct quantification and the evaluation of the rate of deconjugation for sulfates and glucuronides in every sample. In general, the sensitivity of the method was suitable for the detection of the endogenous levels, with limits of quantification ranging from 0.1 to 20ng/mL. Accuracies ranging from 80% to 120%, and relative standard deviations below 25% in intra- and inter- assay experiments were found for most of the analytes. The applicability of the validated method was tested by quantifying twenty-two metabolites in 24-h urine samples collected from healthy individuals. The ranges for the excretion of steroids in the total and glucuronide fractions obtained with the new method were compared with those available in the literature. By comparing the figures in both fractions, an estimation of the percentage that the sulfation represents for each steroid was also calculated. The presence of side enzymatic activities and the utility of the method for clinical studies as well as for doping control analysis is discussed.
Collapse
Affiliation(s)
- Juan Robles
- Servei d'Anàlisis Cliniques Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Josep Marcos
- Bioanalysis Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Nuria Renau
- Bioanalysis Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Lorena Garrostas
- Bioanalysis Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Doping Control Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jordi Segura
- Bioanalysis Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain; Doping Control Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rosa Ventura
- Bioanalysis Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain; Doping Control Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Bernardí Barceló
- Servei d'Anàlisis Cliniques Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Antonia Barceló
- Servei d'Anàlisis Cliniques Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Oscar J Pozo
- Bioanalysis Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Marcos J, Pozo OJ. Current LC-MS methods and procedures applied to the identification of new steroid metabolites. J Steroid Biochem Mol Biol 2016; 162:41-56. [PMID: 26709140 DOI: 10.1016/j.jsbmb.2015.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
The study of the metabolism of steroids has a long history; from the first characterizations of the major metabolites of steroidal hormones in the pre-chromatographic era, to the latest discoveries of new forms of excretions. The introduction of mass spectrometers coupled to gas chromatography at the end of the 1960's represented a major breakthrough for the elucidation of new metabolites. In the last two decades, this technique is being complemented by the use of liquid chromatography-mass spectrometry (LC-MS). In addition of becoming fundamental in clinical steroid determinations due to its excellent specificity, throughput and sensitivity, LC-MS has emerged as an exceptional tool for the discovery of new steroid metabolites. The aim of the present review is to provide an overview of the current LC-MS procedures used in the quest of novel metabolic products of steroidal hormones and exogenous steroids. Several aspects regarding LC separations are first outlined, followed by a description of the key processes that take place in the mass spectrometric analysis, i.e. the ionization of the steroids in the source and the fragmentation of the selected precursor ions in the collision cell. The different analyzers and approaches employed together with representative examples of each of them are described. Special emphasis is placed on triple quadrupole analyzers (LC-MS/MS), since they are the most commonly employed. Examples on the use of precursor ion scan, neutral loss scan and theoretical selected reaction monitoring strategies are also explained.
Collapse
Affiliation(s)
- Josep Marcos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain; Toxicology Department, Labco Diagnostics, Verge de Guadalupe 18, 08950 Esplugues de Llobregat, Spain
| | - Oscar J Pozo
- Bioanalysis Research Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
7
|
Derivatization of steroids in biological samples for GC–MS and LC–MS analyses. Bioanalysis 2015; 7:2515-36. [DOI: 10.4155/bio.15.176] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The determination of steroids in biological samples is essential in different areas of knowledge. MS combined with either GC or LC is considered the best analytical technique for specific and sensitive determinations. However, due to the physicochemical properties of some steroids, and the low concentrations found in biological samples, the formation of a derivative prior to their analysis is required. In GC–MS determinations, derivatization is needed for generating volatile and thermally stable compounds. The improvement in terms of stability and chromatographic retention are the main reasons for selecting the derivatization agent. On the other hand, derivatization is not compulsory in LC–MS analyses and the derivatization is typically used for improving the ionization and therefore the overall sensitivity achieved.
Collapse
|