1
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
2
|
Li X, Wang W, Yan J, Zeng F. Glutamic Acid Transporters: Targets for Neuroprotective Therapies in Parkinson's Disease. Front Neurosci 2021; 15:678154. [PMID: 34220434 PMCID: PMC8242205 DOI: 10.3389/fnins.2021.678154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly individuals. At present, no effective drug has been developed to treat PD. Although a variety of drugs exist for the symptomatic treatment of PD, they all have strong side effects. Most studies on PD mainly focus on dopaminergic neurons. This review highlights the function of glutamic acid transporters (GLTs), including excitatory amino acid transporters (EAATs) and vesicular glutamate transporters (VGLUTs), during the development of PD. In addition, using bioinformatics, we compared the expression of different types of glutamate transporter genes in the cingulate gyrus of PD patients and healthy controls. More importantly, we suggest that the functional roles of glutamate transporters may prove beneficial in the treatment of PD. In summary, VGLUTs and EAATs may be potential targets in the treatment of PD. VGLUTs and EAATs can be used as clinical drug targets to achieve better efficacy. Through this review article, we hope to enable future researchers to improve the condition of PD patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianghong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Pourmirbabaei S, Dolatshahi M, Rahmani F. Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol 2019; 855:149-159. [PMID: 31063776 DOI: 10.1016/j.ejphar.2019.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
Levodopa remains to be the mainstay for treatment of Parkinson disease (PD). Long-term levodopa treatment bears a risk for developing levodopa-induced dyskinesia (LID). LID significantly overshadows patients' quality of life and therapeutic efficacy of levodopa. Pre- and post-synaptic changes in dopamine secretion and signaling, along with altered glutamate receptor expression and glutamatergic signaling in striatal neurons, and the resulting disinhibition-like changes in the corticostriatal circuitry, lead to aberrant activity of motor cortex and formation of LID. Research has highlighted the role of group I metabotropic glutamate receptors especially the metabotropic glutamate receptor 5 (mGlu5) in formation of LID through potentiating of ionotropic glutamate NMDA receptors and dopamine D1/D5 receptors in direct pathway. Accordingly, MTEP and MPEP were the first mGlu5 receptor antagonists which were shown to attenuate LID in animal models through suppression of downstream signaling cascades involving mitogen-activated protein kinase (MAPK) and FosB/delta FosB activation, as well as modulation of prodynorphinegic, preproenkephalinergic, and GABA-ergic neurotransmission systems. Beneficial effects of other mGlu5 receptor antagonists such as AFQ056/mavoglurant and ADX48621/dipraglurant in amelioration of LID has been shown not only in animal models but also in clinical trials. Considering the presence of mGlu receptor dysregulation in rapid eye movement (REM) sleep behavior disorder and depression, which are prodromal signs of PD, along with the neuroprotective effects of mGlu receptor antagonists, and their cognitive benefits, potential effectiveness of mGlu receptor antagonists in early prevention of PD remains to be investigated.
Collapse
Affiliation(s)
- Shayan Pourmirbabaei
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Song Z, Yang H, Peckham EM, Becker JB. Estradiol-Induced Potentiation of Dopamine Release in Dorsal Striatum Following Amphetamine Administration Requires Estradiol Receptors and mGlu5. eNeuro 2019; 6:ENEURO.0446-18.2019. [PMID: 30766916 PMCID: PMC6374122 DOI: 10.1523/eneuro.0446-18.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Estradiol potentiates behavioral sensitization to cocaine as well as self-administration of cocaine and other drugs of abuse in female rodents. Furthermore, stimulated dopamine (DA) in the dorsolateral striatum (DLS) is rapidly enhanced by estradiol, and it is hypothesized that this enhanced DA release mediates the more rapid escalation of drug taking seen in females, compared with males. The mechanisms mediating the effect of estradiol to enhance stimulated DA release were investigated in this study. Using in vivo microdialysis and high performance liquid chromatography coupled with electrochemical detection, we first examined the effect of estradiol on amphetamine-induced DA increase in the DLS of ovariectomized rats. We then tested whether the potentiation of this DA increase could be blocked by the estradiol receptor antagonist, ICI 182,780 (ICI), or an antagonist to the metabotropic glutamate receptor subtype 5 (mGlu5), 2-methyl-6-(phenylethynyl)pyridine (MPEP). There is evidence that estradiol receptors collaborate with mGlu5 within caveoli in DLS and mGlu5 is hypothesized to mediate many of the effects of estradiol in the addiction processes in females. Our data show that estradiol enhances the DA response to amphetamine. Either ICI or MPEP prevented the effect of estradiol to enhance DA release. Importantly, our results also showed that neither ICI or MPEP alone is able to influence the DA response to amphetamine when estradiol is not administrated, suggesting that ICI and MPEP act via estradiol receptors. Together, our findings demonstrate that estradiol potentiates amphetamine-stimulated DA release in the DLS and this effect requires both estradiol receptors and mGlu5.
Collapse
Affiliation(s)
- Zhimin Song
- Molecular and Behavioral Neuroscience Institute
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, California 90095
| | | | - Jill B. Becker
- Molecular and Behavioral Neuroscience Institute
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Efficient Synthesis of Glutamate Peptide-Estradiol Conjugate for Imaging Estrogen Receptor-Positive Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5208964. [PMID: 30356372 PMCID: PMC6176321 DOI: 10.1155/2018/5208964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 11/17/2022]
Abstract
Molecular imaging of estrogen receptor-positive (ER+) pathway-activated system serves the basis of ER+ disease management such as cancers and endometriosis. ER+ patients have better response to endocrine therapy and survive twice as long as negative ER patients. However, tumor resistance resulting from clinical used aromatase inhibitors and antiestrogens is unpredictable. Radiolabeled ER+ ligand could quantify ER+ tissue uptake which helps to stage and restage of the cancer as well as endometriosis. The differential diagnosis of ER+ lesions by using a labeled ligand helps to select the patients for optimal response to endocrine therapy and to discontinue the treatment when resistance occurs. In addition, radiolabeled ER+ ligand serves as basis for image-guided response follow-up. Glutamate receptors are cell surface receptors which are overexpressed in inflammation and infection. Using glutamate peptide as a drug carrier helps to target intracellular genes via glutamate receptor-mediated process. Reports have shown that polyglutamate is a drug carrier that could alter drug solubility and enhance estrogen receptor-ligand binding pocket. However, polyglutamate was a blend of mixed polymer with a wide range of molecular weight. Thus, the structural confirmation and purity of the conjugates were not optimized. To overcome this problem, the efficient synthesis of glutamate peptide-estradiol (GAP-EDL) conjugate was achieved with high purity. EDL was conjugated site-specific at the first glutamate of GAP. The average cell uptake of 68Ga-GAP-EDL was 5-fold higher than the previous reported synthesis. The efficient synthesis of GAP-EDL has greatly enhanced sensitivity and specificity in cell uptake studies. In vivo PET imaging studies indicated that 68Ga-GAP-EDL could image ER (+) tumors in MCF-7 tumor-bearing mice. Therefore, GAP-EDL makes it possible to image ER-enriched endometriosis and cancer.
Collapse
|
6
|
Enterría-Morales D, López-López I, López-Barneo J, d’Anglemont de Tassigny X. Striatal GDNF Production Is Independent to Circulating Estradiol Level Despite Pan-Neuronal Activation in the Female Mouse. PLoS One 2016; 11:e0164391. [PMID: 27741271 PMCID: PMC5065215 DOI: 10.1371/journal.pone.0164391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/23/2016] [Indexed: 11/25/2022] Open
Abstract
Gender difference in Parkinson’s disease (PD) suggests that female sex steroids may promote dopaminergic neuron survival and protect them from degeneration. The glial cell line-derived neurotrophic factor (GDNF) is believed to be dopaminotrophic; thus it is considered as a potential therapeutic target in PD. Additionally, GDNF is endogenously synthetized in the caudate/putamen of humans and striatum in rodents. A neuroprotective role of estrogens on the nigrostriatal pathway via the stimulation of GDNF has been proposed. Since the GDNF-producing parvalbumin (Parv) interneurons express the estrogen receptor alpha in the mouse striatum, we sought to determine whether ectopic estrogenic compound modulates the GDNF synthesis in mice. Using an ovariectomized-estradiol (E2) replacement regimen, which reliably generates a rise of plasma estradiol, we assessed the effects of different levels of E2 on the activation of striatal neuronal populations, and GDNF production. A strong correlation was found between plasma E2 and the expression of the immediate early gene cFos in the striatum, as well as in other cortical regions. However, moderate and high E2 treatments failed to induce any striatal GDNF mRNA and protein synthesis. High E2 only stimulates cFos induction in a low percentage of striatal Parv neurons whereas the majority of cFos-positive cells are medium spiny neurons. Activation of these projecting neurons by E2 suggests a role of circulating sex steroids in the modulation of striatal neural pathways.
Collapse
Affiliation(s)
- Daniel Enterría-Morales
- Instituto de Biomedicina de Sevilla (IBIS), Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen del Rocío/ CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ivette López-López
- Instituto de Biomedicina de Sevilla (IBIS), Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen del Rocío/ CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBIS), Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen del Rocío/ CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Xavier d’Anglemont de Tassigny
- Instituto de Biomedicina de Sevilla (IBIS), Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen del Rocío/ CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Cheng Q, Meng J, Wang XS, Kang WB, Tian Z, Zhang K, Liu G, Zhao JN. G-1 exerts neuroprotective effects through G protein-coupled estrogen receptor 1 following spinal cord injury in mice. Biosci Rep 2016; 36:e00373. [PMID: 27407175 PMCID: PMC5006313 DOI: 10.1042/bsr20160134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) always occurs accidently and leads to motor dysfunction because of biochemical and pathological events. Estrogen has been shown to be neuroprotective against SCI through estrogen receptors (ERs), but the underlying mechanisms have not been fully elucidated. In the present study, we investigated the role of a newly found membrane ER, G protein-coupled estrogen receptor 1 (GPR30 or GPER1), and discussed the feasibility of a GPR30 agonist as an estrogen replacement. Forty adult female C57BL/6J mice (10-12 weeks old) were divided randomly into vehicle, G-1, E2, G-1 + G-15 and E2 + G-15 groups. All mice were subjected to SCI using a crushing injury approach. The specific GPR30 agonist, G-1, mimicked the effects of E2 treatment by preventing SCI-induced apoptotic cell death and enhancing motor functional recovery after injury. GPR30 activation regulated phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/extracellular signal-regulated kinase (ERK) signalling pathways, increased GPR30 and anti-apoptosis proteins Bcl-2 and brain derived neurotrophic factor (BDNF), but decreased the pro-apoptosis factor Bax and cleaved caspase-3. However, the neuroprotective effects of G-1 and E2 were blocked by the specific GPR30 antagonist, G-15. Thus, GPR30 rather than classic ERs is required to induce estrogenic neuroprotective effects. Given that estrogen replacement therapy may cause unexpected side effects, especially on the reproductive system, GPR30 agonists may represent a potential therapeutic approach for treating SCI.
Collapse
Affiliation(s)
- Qiang Cheng
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Jia Meng
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Bo Kang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Liu
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Jian-Ning Zhao
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| |
Collapse
|
8
|
Lin SX, Shi R, Hu XJ, Penning TM. Current physico-biochemistry in steroid research and status of structural biology for steroid-converting enzymes. J Steroid Biochem Mol Biol 2016; 161:1-4. [PMID: 27196263 PMCID: PMC5278676 DOI: 10.1016/j.jsbmb.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S X Lin
- Axe of Endocrinology and Nephrology, CHU research center and Faculty of Medicine, Laval University; Quebec, Canada.
| | - R Shi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, IBIS et PROTEO, Université Laval, Pavillon Charles-Eugène Marchand, Québec City, Canada
| | - X J Hu
- School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - T M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems, Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, United States
| |
Collapse
|