1
|
Oliveira BA, Levy D, Paz JL, de Freitas FA, Reichert CO, Rodrigues A, Bydlowski SP. 7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:11380. [PMID: 39518932 PMCID: PMC11545361 DOI: 10.3390/ijms252111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in osteogenic or adipogenic media. Osteogenic and adipogenic differentiation was evaluated by Alizarin red and Oil Red O staining, respectively. Osteogenic (ALPL, RUNX2, BGLAP) and adipogenic markers (PPARƔ, C/EBPα) were determined by RT-PCR. Differentiation signaling pathways (SHh, Smo, Gli-3, β-catenin) were determined by indirect immunofluorescence. ATMSCs treated with 7-KC in osteogenic media stained positively for Alizarin Red. 7-KC in adipogenic media decreased the number of adipocytes. 7-KC increased ALPL and RUNX2 but not BGLAP expressions. 7-KC decreased expression of PPARƔ and C/EBPα, did not change SHh, Smo, and Gli-3 expression, and increased the expression of β-catenin. In conclusion, 7-KC favors osteogenic differentiation of ATMSCs through the expression of early osteogenic genes (matrix maturation phase) by activating the Wnt/β-catenin signaling pathway, while inhibiting adipogenic differentiation. This knowledge can be potentially useful in regenerative medicine, in treatments for bone diseases.
Collapse
Affiliation(s)
- Beatriz Araújo Oliveira
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Jessica Liliane Paz
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Fabio Alessandro de Freitas
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Alessandro Rodrigues
- Department of Earth and Exact Sciences, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
2
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
3
|
de Freitas FA, Levy D, Reichert CO, Cunha-Neto E, Kalil J, Bydlowski SP. Effects of Oxysterols on Immune Cells and Related Diseases. Cells 2022; 11:cells11081251. [PMID: 35455931 PMCID: PMC9031443 DOI: 10.3390/cells11081251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are the products of cholesterol oxidation. They have a wide range of effects on several cells, organs, and systems in the body. Oxysterols also have an influence on the physiology of the immune system, from immune cell maturation and migration to innate and humoral immune responses. In this regard, oxysterols have been involved in several diseases that have an immune component, from autoimmune and neurodegenerative diseases to inflammatory diseases, atherosclerosis, and cancer. Here, we review data on the participation of oxysterols, mainly 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, in the immune system and related diseases. The effects of these oxysterols and main oxysterol receptors, LXR and EBI2, in cells of the immune system (B cells, T cells, macrophages, dendritic cells, oligodendrocytes, and astrocytes), and in immune-related diseases, such as neurodegenerative diseases, intestinal diseases, cancer, respiratory diseases, and atherosclerosis, are discussed.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy (LIM60), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil;
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
| | - Jorge Kalil
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence:
| |
Collapse
|
4
|
de Freitas FA, Levy D, Zarrouk A, Lizard G, Bydlowski SP. Impact of Oxysterols on Cell Death, Proliferation, and Differentiation Induction: Current Status. Cells 2021; 10:cells10092301. [PMID: 34571949 PMCID: PMC8468221 DOI: 10.3390/cells10092301] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol produced by enzymatic activity or non-enzymatic pathways (auto-oxidation). The oxidation processes lead to the synthesis of about 60 different oxysterols. Several oxysterols have physiological, pathophysiological, and pharmacological activities. The effects of oxysterols on cell death processes, especially apoptosis, autophagy, necrosis, and oxiapoptophagy, as well as their action on cell proliferation, are reviewed here. These effects, also observed in several cancer cell lines, could potentially be useful in cancer treatment. The effects of oxysterols on cell differentiation are also described. Among them, the properties of stimulating the osteogenic differentiation of mesenchymal stem cells while inhibiting adipogenic differentiation may be useful in regenerative medicine.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Amira Zarrouk
- Faculty of Medicine, University of Monastir, LR12ES05, Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Monastir, Tunisia & Faculty of Medicine, University of Sousse, Sousse 5000, Tunisia;
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA, University of Bourgogne Franche-Comté, Institut National de la Santé et de la Recherche Médicale—Inserm, 7270 Dijon, France;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
5
|
Abstract
Mesenchymal stem cells have the ability to differentiate into several cell types when exposed to determined substances, including oxysterols. Oxysterols are cholesterol products derived from its auto-oxidation by reactive species or from enzymatic action. They are present in the body in low quantities under physiological conditions and exhibit several physiological and pharmacological actions according to both the types of oxysterol and tissue. Some of them are cytotoxic while others have been shown to promote cell differentiation through the action on several different receptors, such as nuclear LXR receptors and Smoothened receptor ligands. Here, we review the main pathways by which oxysterols have been associated with cell differentiation and death of mesenchymal stem cells.
Collapse
|
6
|
Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants (Basel) 2020; 10:antiox10010011. [PMID: 33374313 PMCID: PMC7824310 DOI: 10.3390/antiox10010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
7
|
Paz JL, Levy D, Oliveira BA, de Melo TC, de Freitas FA, Reichert CO, Rodrigues A, Pereira J, Bydlowski SP. 7-Ketocholesterol Promotes Oxiapoptophagy in Bone Marrow Mesenchymal Stem Cell from Patients with Acute Myeloid Leukemia. Cells 2019; 8:E482. [PMID: 31117185 PMCID: PMC6562391 DOI: 10.3390/cells8050482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
7-Ketocholesterol (7-KC) is a cholesterol oxidation product with several biological functions. 7-KC has the capacity to cause cell death depending on the concentration and specific cell type. Mesenchymal stem cells (MSCs) are multipotent cells with the ability to differentiate into various types of cells, such as osteoblasts and adipocytes, among others. MSCs contribute to the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases, such as leukemia, to a yet unknown extent. Here, we describe the effect of 7-KC on the death of bone marrow MSCs from patients with acute myeloid leukemia (LMSCs). LMSCs were less susceptible to the death-promoting effect of 7-KC than other cell types. 7-KC exposure triggered the extrinsic pathway of apoptosis with an increase in activated caspase-8 and caspase-3 activity. Mechanisms other than caspase-dependent pathways were involved. 7-KC increased ROS generation by LMSCs, which was related to decreased cell viability. 7-KC also led to disruption of the cytoskeleton of LMSCs, increased the number of cells in S phase, and decreased the number of cells in the G1/S transition. Autophagosome accumulation was also observed. 7-KC downregulated the SHh protein in LMSCs but did not change the expression of SMO. In conclusion, oxiapoptophagy (OXIdative stress + APOPTOsis + autophagy) seems to be activated by 7-KC in LMSCs. More studies are needed to better understand the role of 7-KC in the death of LMSCs and the possible effects on the SHh pathway.
Collapse
Affiliation(s)
- Jessica Liliane Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Beatriz Araujo Oliveira
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Thatiana Correia de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Fabio Alessandro de Freitas
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Alessandro Rodrigues
- Departmento de Ciencias Exactas e da Terra, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil.
| | - Juliana Pereira
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), CNPq, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
8
|
Levy D, Reichert CO, Bydlowski SP. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants (Basel) 2019; 8:antiox8050118. [PMID: 31052559 PMCID: PMC6562914 DOI: 10.3390/antiox8050118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. With increasing age, susceptibility to the development of diseases related to lipid peroxidation and tissue injury increases, due to chronic inflammatory processes, and production of reactive oxygen species (ROS) and free radicals. The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. The most studied member product is PON1, a protein associated with high-density lipoprotein with paraoxonase/esterase activity. Nevertheless, all the three proteins prevent oxidative stress. The major aim of this review is to highlight the importance of the role of PON enzymes in the aging process, and in the development of the main diseases present in the elderly: cardiovascular disease, diabetes mellitus, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Débora Levy
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Sérgio Paulo Bydlowski
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Center of Innovation and Translacional Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
9
|
Levy D, de Melo TC, Oliveira BA, Paz JL, de Freitas FA, Reichert CO, Rodrigues A, Bydlowski SP. 7-Ketocholesterol and cholestane-triol increase expression of SMO and LXRα signaling pathways in a human breast cancer cell line. Biochem Biophys Rep 2018; 19:100604. [PMID: 31463370 PMCID: PMC6709374 DOI: 10.1016/j.bbrep.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Oxysterols are 27-carbon oxidation products of cholesterol metabolism. Oxysterols possess several biological actions, including the promotion of cell death. Here, we examined the ability of 7-ketocholesterol (7-KC), cholestane-3β-5α-6β-triol (triol), and a mixture of 5α-cholestane-3β,6β-diol and 5α-cholestane-3β,6α-diol (diol) to promote cell death in a human breast cancer cell line (MDA-MB-231). We determined cell viability, after 24-h incubation with oxysterols. These oxysterols promoted apoptosis. At least part of the observed effects promoted by 7-KC and triol arose from an increase in the expression of the sonic hedgehog pathway mediator, smoothened. However, this increased expression was apparently independent of sonic hedgehog expression, which did not change. Moreover, these oxysterols led to increased expression of LXRα, which is involved in cellular cholesterol efflux, and the ATP-binding cassette transporters, ABCA1 and ABCG1. Diols did not affect these pathways. These results suggested that the sonic hedgehog and LXRα pathways might be involved in the apoptotic process promoted by 7-KC and triol.
Collapse
Affiliation(s)
- Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Thatiana Correa de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Beatriz A. Oliveira
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Jessica L. Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Fabio A. de Freitas
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Cadiele O. Reichert
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | | - Sergio P. Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Brazil
- Correspondence to: Department of Hematology, Faculdade de Medicina, Universidade de Sao Paulo, Av.Dr. Enéas de Carvalho Aguiar,155, 1st floor, room 43, 05403-000 São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Oxysterols selectively promote short-term apoptosis in tumor cell lines. Biochem Biophys Res Commun 2018; 505:1043-1049. [DOI: 10.1016/j.bbrc.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
11
|
Favero GM, Paz JL, Otake AH, Maria DA, Caldini EG, de Medeiros RSS, Deus DF, Chammas R, Maranhão RC, Bydlowski SP. Cell internalization of 7-ketocholesterol-containing nanoemulsion through LDL receptor reduces melanoma growth in vitro and in vivo: a preliminary report. Oncotarget 2018; 9:14160-14174. [PMID: 29581835 PMCID: PMC5865661 DOI: 10.18632/oncotarget.24389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a >50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.
Collapse
Affiliation(s)
- Giovani M Favero
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Department of General Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Jessica L Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Andréia H Otake
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Instituto do Cancer do Estado de Sao Paulo (ICESP), SP, Brazil
| | - Durvanei A Maria
- Biochemistry and Biophysics Laboratories, Instituto Butantan, Sao Paulo, SP, Brazil
| | - Elia G Caldini
- Laboratory for Cell Biology, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raphael S S de Medeiros
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Instituto do Cancer do Estado de Sao Paulo (ICESP), SP, Brazil
| | - Debora F Deus
- Laboratory of Metabolism and Lipids, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Instituto do Cancer do Estado de Sao Paulo (ICESP), SP, Brazil
| | - Raul C Maranhão
- Laboratory of Metabolism and Lipids, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio P Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
Levy D, de Melo TC, Ruiz JL, Bydlowski SP. Oxysterols and mesenchymal stem cell biology. Chem Phys Lipids 2017; 207:223-230. [DOI: 10.1016/j.chemphyslip.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
|
13
|
Outside-in, inside-out: Proteomic analysis of endothelial stress mediated by 7-ketocholesterol. Chem Phys Lipids 2017; 207:231-238. [DOI: 10.1016/j.chemphyslip.2017.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
|
14
|
Kloudova A, Guengerich FP, Soucek P. The Role of Oxysterols in Human Cancer. Trends Endocrinol Metab 2017; 28:485-496. [PMID: 28410994 PMCID: PMC5474130 DOI: 10.1016/j.tem.2017.03.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol formed in the human body or ingested in the diet. By modulating the activity of many proteins [e.g., liver X receptors (LXRs), oxysterol-binding proteins (OSBPs), some ATP-binding cassette (ABC) transporters], oxysterols can affect many cellular functions and influence various physiological processes (e.g., cholesterol metabolism, membrane fluidity regulation, intracellular signaling pathways). Therefore, the role of oxysterols is also important in pathological conditions (e.g., atherosclerosis, diabetes mellitus type 2, neurodegenerative disorders). Finally, current evidence suggests that oxysterols play a role in malignancies such as breast, prostate, colon, and bile duct cancer. This review summarizes the physiological importance of oxysterols in the human body with a special emphasis on their roles in various tumors.
Collapse
Affiliation(s)
- Alzbeta Kloudova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic; Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen 323 00, Czech Republic.
| |
Collapse
|
15
|
Chang MC, Chen YJ, Liou EJW, Tseng WY, Chan CP, Lin HJ, Liao WC, Chang YC, Jeng PY, Jeng JH. 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells. Oncotarget 2016; 7:74473-74483. [PMID: 27740938 PMCID: PMC5342680 DOI: 10.18632/oncotarget.12578] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (atherosclerosis, stroke, myocardiac infarction etc.) are the major systemic diseases of elder peoples in the world. This is possibly due to increased levels of oxidized low-density lipoproteins (oxLDLs) such as 7-ketocholesterol (7-KC) and lysophosphatidylcholine (LPC) that damage vascular endothelial cells, induce inflammatory responses, to elevate the risk of cardiovascular diseases, Alzheimer's disease, and age-related macular degeneration. However the toxic effects of 7-KC on endothelial cells are not known. In this study, 7-KC showed cytotoxicity to endothelial cells at concentrations higher than 10 µg/ml. 7-KC stimulated ATM/Chk2, ATR-Chk1 and p53 signaling pathways in endothelial cells. 7-KC also induced G0/G1 cell cycle arrest and apoptosis with an inhibition of Cyclin dependent kinase 1 (Cdk1) and cyclin B1 expression. Secretion and expression of IL-8 in endothelial cells were stimulated by 7-KC. 7-KC further induced intracellular ROS production as shown by increase in DCF fluorescence and Akt phosphorylation. LY294002 attenuated the 7-KC-induced apoptosis and IL-8 mRNA expression of endothelial cells. These results indicate that oxLDLs such as 7-KC may contribute to the pathogenesis of atherosclerosis, thrombosis and cardiovascular diseases by induction of endothelial damage, apoptosis and inflammatory responses. These events are associated with ROS production, activation of ATM/Chk2, ATR/Chk1, p53 and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | | | - Wan-Yu Tseng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hseuh-Jen Lin
- Department of Dentistry, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | - Ya-Ching Chang
- Department of Dentistry, Mackey Memorial Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | - Jiiang-Huei Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| |
Collapse
|