1
|
Wen HM, Zhang YW, Feng FJ, Huang GB, Lv YH, Zhang ZY, Ding LJ. Antibacterial oxygenated ergostane-type steroids produced by the marine sponge-derived fungus Aspergillus sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:548-554. [PMID: 37712720 DOI: 10.1080/10286020.2023.2259317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Two oxygenated ergostane-type steroids including one new compound, 3β-hydroxy-5α,6β-methoxyergosta-7,22-dien-15-one (1) along with a known analogue ergosta-6,22-dien-3β,5α,8α-triol (2) were isolated from the crude extracts of the marine sponge-derived fungus Aspergillus sp. Their structures were elucidated on the basis of combined NMR and MS spectroscopic methods. Compound 1 was a marine ergostane-type steroid with two methoxy groups at C-5 and C-6, respectively. These oxygenated ergostane-type steroids were evaluated for their antibacterial activities against human or aquatic pathogens. Among them, compound 1 exhibited antibacterial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Hui-Min Wen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Ya-Wen Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Fang-Jian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Guo-Bao Huang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Yu-Han Lv
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Zou-Yan Zhang
- National Clinical Trial Institute, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315020, China
| | - Li-Jian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Antimicrobial Activity of Lactones. Antibiotics (Basel) 2022; 11:antibiotics11101327. [PMID: 36289985 PMCID: PMC9598898 DOI: 10.3390/antibiotics11101327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The development of bacterial resistance to antibiotics and the consequent lack of effective therapy is one of the biggest problems in modern medicine. A consequence of these processes is an urgent need to continuously design and develop novel antimicrobial agents. Among the compounds showing antimicrobial potential, lactones are a group to explore. For centuries, their antimicrobial activities have been used in folk medicine. Currently, novel lactone compounds are continuously described in the literature. Some of those structures exhibit high antimicrobial potential and some are an inspiration for design and synthesis of future drugs. This paper describes recent developments on antimicrobial lactones with smaller ring sizes, up to seven membered ε-lactones. Their isolation from natural sources, chemical synthesis, synergistic activity with antibiotics, and effects on quorum sensing are presented herein.
Collapse
|
3
|
Pacheco DF, Alonso D, Ceballos LG, Castro AZ, Brown Roldán S, García Díaz M, Villa Testa A, Wagner SF, Piloto-Ferrer J, García YC, Olea AF, Espinoza L. Synthesis of Four Steroidal Carbamates with Antitumor Activity against Mouse Colon Carcinoma CT26WT Cells: In Vitro and In Silico Evidence. Int J Mol Sci 2022; 23:ijms23158775. [PMID: 35955909 PMCID: PMC9369283 DOI: 10.3390/ijms23158775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers worldwide. If detected on time, surgery can expand life expectations of patients up to five more years. However, if metastasis has grown deliberately, the use of chemotherapy can play a crucial role in CRC control. Moreover, the lack of selectivity of current anticancer drugs, plus mutations that occur in cancerous cells, demands the development of new chemotherapeutic agents. Several steroids have shown their potentiality as anticancer agents, while some other compounds, such as Taxol and its derivatives bearing a carbamate functionality, have reached the market. In this article, the synthesis, characterization, and antiproliferative activity of four steroidal carbamates on mouse colon carcinoma CT26WT cells are described. Carbamate synthesis occurred via direct reaction between diosgenin, its B-ring modified derivative, and testosterone with phenyl isocyanate under a Brønsted acid catalysis. All obtained compounds were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), High Resolution Mass Spectroscopy (HRMS); their melting points are also reported. Results obtained from antiproliferative activity assays indicated that carbamates compounds have inhibitory effects on the growth of this colon cancer cell line. A molecular docking study carried out on Human Prostaglandin E Receptor (EP4) showed a high affinity between carbamates and protein, thus providing a valuable theoretical explanation of the in vitro results.
Collapse
Affiliation(s)
- Daylin Fernández Pacheco
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | - Dayana Alonso
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Leonardo González Ceballos
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Armando Zaldo Castro
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | | | - Mairelys García Díaz
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | | | | | | | - Yamilet Coll García
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
- Correspondence: (Y.C.G.); (L.E.); Tel.: +53-52952050 (Y.C.G.); +56-32-2654225 (L.E.)
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, San Miguel, Santiago 7500912, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Correspondence: (Y.C.G.); (L.E.); Tel.: +53-52952050 (Y.C.G.); +56-32-2654225 (L.E.)
| |
Collapse
|
4
|
Nature-derived anticancer steroids outside cardica glycosides. Fitoterapia 2020; 147:104757. [PMID: 33069834 DOI: 10.1016/j.fitote.2020.104757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Steriods which are ubiquitous in natural resources are important components of cell membranes and involved in several physiological functions. Steriods not only exerted the anticancer activity through inhibition of various enzymes and receptors in cancer cells, inclusive of aromatase, sulfatase, 5α-reductase, hydroxysteroid dehydrogenase and CYP 17, but also exhibited potential activity against various cancer forms including multidrug-resistant cancer with low cytotoxicity, and high bioavailability. Accordingly, steroids are useful scaffolds for the discovery of novel anticancer agents. This review aims to outline the advances of nature-derived steroids outside cardica glycosides with anticancer potential, covering the articles published between Jan. 2015 and Aug. 2020.
Collapse
|
5
|
A Convenient Synthesis of (16S,20S)-3β-Hydroxy-5α-pregnane-20,16-carbolactam and Its N-alkyl Derivatives. Molecules 2020; 25:molecules25102377. [PMID: 32443910 PMCID: PMC7287600 DOI: 10.3390/molecules25102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
A concise synthesis of (16S,20S)-3β-hydroxy-5α-pregnane-20,16-carbolactam from tigogenin via the corresponding lactone is described. The most efficient synthetic route consisted of the lactone ring-opening with aminoalane reagent followed by PDC or Dess-Martin oxidation. The oxo-amide obtained was subjected to cyclization with Et3SiH/TFA or Et3SiH/Bi(TfO)3. Alternately, the lactone was converted first to the oxo-acid, which was then subjected to the microwave-assisted reductive amination. N-Alkyl derivatives were also obtained in a similar way.
Collapse
|