1
|
Zhang H, Zhang Y, Li Q, Hao F, Stacey G, Chen D. Plant PAQR-like sensors activate heterotrimeric G proteins to confer resistance against multiple pathogens. MOLECULAR PLANT 2025; 18:639-650. [PMID: 40025738 PMCID: PMC11981823 DOI: 10.1016/j.molp.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/03/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Human adiponectin receptors (AdipoRs) and membrane progestin receptors (mPRs, members of the progestin and adipoQ receptor [PAQR] family) are seven-transmembrane receptors involved in the regulation of metabolism and cancer development, which share structural similarities with G protein-coupled receptors. Plant PAQR-like sensors (PLSs) are homologous to human PAQRs but their molecular functions remain unclear. In this study, we found that PLSs associate with cell surface receptor-like kinases through KIN7 and positively regulate plant immune responses, stomatal defense, and disease resistance. Moreover, PLSs activate heterotrimeric G proteins (Gαβγ) to transduce immune signals and regulate the exchange of GDP for GTP on GPA1. Further analyses revealed that the immune function of PLSs is conserved in rice and soybean and contributes to resistance against multiple diseases. Notably, heterologous expression of human AdipoRs in Arabidopsis replicates the immune functions of PLSs. Collectively, our findings demonstrate that PLSs are key modulators of plant immunity via the G-protein pathway and highlight the potential application of human genes in enhancing plant disease resistance.
Collapse
Affiliation(s)
- Houxiao Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuzhu Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Quanlin Li
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fengsheng Hao
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Dongqin Chen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Rahaei N, Buynack LM, Kires L, Movasseghi Y, Chapman CA. Progesterone and allopregnanolone facilitate excitatory synaptic transmission in the infralimbic cortex via activation of membrane progesterone receptors. Neuroscience 2025; 567:9-17. [PMID: 39722289 DOI: 10.1016/j.neuroscience.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Estrogens and progesterone can have rapid effects on neuronal function and can modify the use of spatial navigation strategies dependent upon the prefrontal cortex, striatum, and hippocampus. Here, we assessed the effects of 17β-estradiol (E2), progesterone, and its metabolite allopregnanolone, on evoked excitatory postsynaptic potentials in the infralimbic region of the female rat prefrontal cortex. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of layer I were first characterized by recording responses at multiple depths between the cortical surface and the underlying white matter. Current source density analysis showed that the short-latency negative component was generated by activation of synaptic currents within layer I, and that putative polysynaptic responses were generated in layers III to V. The amplitude of evoked field EPSPs in layer I was not significantly affected by 20 min application of 17β-estradiol (10 nM), but both 100 nM progesterone and 1 µM allopregnanolone caused lasting increases in field EPSP amplitude. The effects of progesterone were not blocked by the nuclear progesterone receptor antagonist RU486 (1 µM). Both progesterone and allopregnanolone are known to activate membrane progesterone receptors, and we found that the membrane progesterone receptor agonist Org OD 02-0 facilitated EPSPs, and also occluded further increases induced by either progesterone or allopregnanolone. These results provide evidence that both progesterone and allopregnanolone facilitate synaptic responses in layer I of the infralimbic cortex by activating membrane progesterone receptors.
Collapse
Affiliation(s)
- Nima Rahaei
- Department of Psychology, Concordia University, Montreal, Canada
| | - Lauren M Buynack
- Department of Psychology, Concordia University, Montreal, Canada
| | - Lukas Kires
- Department of Psychology, Concordia University, Montreal, Canada
| | | | - C Andrew Chapman
- Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
3
|
Bagheri V, Rezaei F, Alipour R, Sereshki N, Ahmadipanah V, Rafiee M. Progesterone decreases viability and up regulates membrane progesterone receptors expression on the human Chronic Myeloid Leukemia cell line. Cancer Genet 2024; 288-289:114-117. [PMID: 39522451 DOI: 10.1016/j.cancergen.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Progesterone (P4) has an important effect (activatory or inhibitory) on cell proliferation. Although there is evidence of the impact of progesterone on sex-linked cancers, it can affect other cancer cells expressing P4 receptors (PRs). We evaluated the expression of membrane P4 receptors (mPRs) and the viability in progesterone-treated K562 cells to inspect the possible effects route of progesterone on this (CML) cancer cell line. K562 cells were exposed to various concentrations of progesterone or no exposure for 48 and 72 h. The percentage of viability and cells that expressed mPRα and mPRβ were evaluated by MTT test and flow cytometry respectively. Progesterone significantly increased the expression of mPRα and especially mPRβ on the surface of K562 cells and significantly decreased their viability (p ≤ 0.05). Progesterone can reduce viability in K562 cells. Our findings showed that progesterone affects its receptor expression on K562 cells. Thus it may influence the performance of K562 cells in addition to its direct effects on these cells (via binding to its receptors).
Collapse
MESH Headings
- Humans
- Receptors, Progesterone/metabolism
- Progesterone/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- K562 Cells
- Cell Survival/drug effects
- Up-Regulation/drug effects
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Vahid Bagheri
- Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fateme Rezaei
- Medical school, Birjand University of Medical Sciences, Birjand, Iran
| | - Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Sereshki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mitra Rafiee
- Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Pavlik T, Konchekov E, Shimanovskii N. Antitumor progestins activity: Cytostatic effect and immune response. Steroids 2024; 210:109474. [PMID: 39048056 DOI: 10.1016/j.steroids.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Progestins are used to treat some hormone-sensitive tumors. This review discusses the mechanisms of progestins' effects on tumor cells, the differences in the effects of progesterone and its analogs on different tumor types, and the influence of progestins on the antitumor immune response. Progestins cause a cytostatic effect, but at the same time they can suppress the antitumor immune response, and this can promote the proliferation and metastasis of tumor cells. Such progestins as dienogest, megestrol acetate and levonorgestrel increase the activity of NK-cells, which play a major role in the body's fight against tumor cells. The use of existing progestins and the development of new drugs with gestagenic activity may hold promise in oncotherapy.
Collapse
Affiliation(s)
- T Pavlik
- Pirogov Russian National Research Medical University, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia.
| | - E Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; Peoples Friendship University of Russia (RUDN University), Russia
| | - N Shimanovskii
- Pirogov Russian National Research Medical University, Russia
| |
Collapse
|
5
|
Torres LHM, Arrais JP, Ribeiro B. Combining graph neural networks and transformers for few-shot nuclear receptor binding activity prediction. J Cheminform 2024; 16:109. [PMID: 39334272 PMCID: PMC11429188 DOI: 10.1186/s13321-024-00902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Nuclear receptors (NRs) play a crucial role as biological targets in drug discovery. However, determining which compounds can act as endocrine disruptors and modulate the function of NRs with a reduced amount of candidate drugs is a challenging task. Moreover, the computational methods for NR-binding activity prediction mostly focus on a single receptor at a time, which may limit their effectiveness. Hence, the transfer of learned knowledge among multiple NRs can improve the performance of molecular predictors and lead to the development of more effective drugs. In this research, we integrate graph neural networks (GNNs) and Transformers to introduce a few-shot GNN-Transformer, Meta-GTNRP to predict the binding activity of compounds using the combined information of different NRs and identify potential NR-modulators with limited data. The Meta-GTNRP model captures the local information in graph-structured data and preserves the global-semantic structure of molecular graph embeddings for NR-binding activity prediction. Furthermore, a few-shot meta-learning approach is proposed to optimize model parameters for different NR-binding tasks and leverage the complementarity among multiple NR-specific tasks to predict binding activity of compounds for each NR with just a few labeled molecules. Experiments with a compound database containing annotations on the binding activity for 11 NRs shows that Meta-GTNRP outperforms other graph-based approaches. The data and code are available at: https://github.com/ltorres97/Meta-GTNRP .Scientific contributionThe proposed few-shot GNN-Transformer model, Meta-GTNRP captures the local structure of molecular graphs and preserves the global-semantic information of graph embeddings to predict the NR-binding activity of compounds with limited available data; A few-shot meta-learning framework adapts model parameters across NR-specific tasks for different NRs in a joint learning procedure to predict the binding activity of compounds for each NR with just a few labeled molecules in highly imbalanced data scenarios; Meta-GTNRP is a data-efficient approach that combines the strengths of GNNs and Transformers to predict the NR-binding properties of compounds through an optimized meta-learning procedure and deliver robust results valuable to identify potential NR-based drug candidates.
Collapse
Affiliation(s)
- Luis H M Torres
- Department of Informatics Engineering, Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, 3030-790, Portugal.
| | - Joel P Arrais
- Department of Informatics Engineering, Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, 3030-790, Portugal
| | - Bernardete Ribeiro
- Department of Informatics Engineering, Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
6
|
Hossain MF, Mustary UH, Tokumoto T. Evidence of binding between diethylstilbestrol (DES) and the goldfish ( Carassius auratus) membrane progesterone receptor α. Toxicol Mech Methods 2024; 34:563-571. [PMID: 38317456 DOI: 10.1080/15376516.2024.2311185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND In a previous study, diethylstilbestrol (DES) was shown to induce oocyte maturation in fish. In the present study, the interaction of DES on goldfish membrane progesterone receptor α (GmPRα) was investigated using a competitive binding assay with radiolabeled steroids. The results indicate that DES exerts its effects on membrane progesterone receptor alpha (mPRα) and induces oocyte maturation through nongenomic steroid mechanisms. This study provides empirical data that demonstrate the binding between DES and GmPRα. METHODS Binding of DES to GmPRα was achieved by using radiolabeled DES and recombinant GmPRα expressed in culture cells or purified GmPRα proteins that coupled to graphene quantum dots (GQDs). Additionally, the competitive binding of fluorescently labeled progesterone to GmPRα-expressing cells was evaluated. RESULTS Although significant nonspecific binding of radiolabeled DES to the cell membrane that expresses GmPRα has been observed, specific binding of DES to GmPRα has been successfully identified in the presence of digitonin. Furthermore, the specific binding of DES to GmPRα was confirmed by a binding assay using GQD-GmPRα. The radiolabeled DES was shown to bind to GQD-GmPRα. Additionally, the competition for the binding of fluorescently labeled progesterone to GmPRα-expressing cells was achieved with the DES. CONCLUSIONS The results of the experiments revealed that DES binds to GmPRα. Thus, it can be concluded that DES induces goldfish oocyte maturation by binding to GmPRα.
Collapse
Affiliation(s)
- Md Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Umme Habiba Mustary
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
7
|
Al‐Kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GE. New insights on the potential effect of progesterone in Covid-19: Anti-inflammatory and immunosuppressive effects. Immun Inflamm Dis 2023; 11:e1100. [PMID: 38018575 PMCID: PMC10683562 DOI: 10.1002/iid3.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a pandemic disease caused by severe acute respiratory syndrome CoV type 2 (SARS-CoV-2). COVID-19 is higher in men than women and sex hormones have immune-modulator effects during different viral infections, including SARS-CoV-2 infection. One of the essential sex hormones is progesterone (P4). AIMS This review aimed to reveal the association between P4 and Covid-19. RESULTS AND DISCUSSION The possible role of P4 in COVID-19 could be beneficial through the modulation of inflammatory signaling pathways, induction of the release of anti-inflammatory cytokines, and inhibition release of pro-inflammatory cytokines. P4 stimulates skew of naïve T cells from inflammatory Th1 toward anti-inflammatory Th2 with activation release of anti-inflammatory cytokines, and activation of regulatory T cells (Treg) with decreased interferon-gamma production that increased during SARS-CoV-2 infection. In addition, P4 is regarded as a potent antagonist of mineralocorticoid receptor (MR), it could reduce MRs that were activated by stimulated aldosterone from high AngII during SARS-CoV-2. P4 active metabolite allopregnanolone is regarded as a neurosteroid that acts as a positive modulator of γ-aminobutyric acid (GABAA ) so it may reduce neuropsychiatric manifestations and dysautonomia in COVID-19 patients. CONCLUSION Taken together, the anti-inflammatory and immunomodulatory properties of P4 may improve central and peripheral complications in COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and Obstetrics, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐Herdecke, Heusnerstrasse 40University of Witten‐HerdeckeWuppertalGermany
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour University, DamanhourAlBeheiraEgypt
| |
Collapse
|
8
|
Shchelkunova TA, Levina IS, Morozov IA, Rubtsov PM, Goncharov AI, Kuznetsov YV, Zavarzin IV, Smirnova OV. Effects of Progesterone and Selective Ligands of Membrane Progesterone Receptors in HepG2 Cells of Human Hepatocellular Carcinoma. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1920-1932. [PMID: 38105209 DOI: 10.1134/s0006297923110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Progesterone exerts multiple effects in different tissues through nuclear receptors (nPRs) and through membrane receptors (mPRs) of adiponectin and progestin receptor families. The effect of progesterone on the cells through different types of receptors can vary significantly. At the same time, it affects the processes of proliferation and apoptosis in normal and tumor tissues in a dual way, stimulating proliferation and carcinogenesis in some tissues, suppressing them and stimulating cell death in others. In this study, we have shown the presence of high level of mPRβ mRNA and protein in the HepG2 cells of human hepatocellular carcinoma. Expression of other membrane and classical nuclear receptors was not detected. It could imply that mPRβ has an important function in the HepG2 cells. The main goal of the work was to study functions of this protein and mechanisms of its action in human hepatocellular carcinoma cells. Previously, we have identified selective mPRs ligands, compounds LS-01 and LS-02, which do not interact with nuclear receptors. Their employment allows differentiating the effects of progestins mediated by different types of receptors. Effects of progesterone, LS-01, and LS-02 on proliferation and death of HepG2 cells were studied in this work, as well as activating phosphorylation of two kinases, p38 MAPK and JNK, under the action of three steroids. It was shown that all three progestins after 72 h of incubation with the cells suppressed their viability and stimulated appearance of phosphatidylserine on the outer surface of the membranes, which was detected by binding of annexin V, but they did not affect DNA fragmentation of the cell nuclei. Progesterone significantly reduced expression of the proliferation marker genes and stimulated expression of the p21 protein gene, but had a suppressive effect on the expression of some proapoptotic factor genes. All three steroids activated JNK in these cells, but had no effect on the p38 MAPK activity. The effects of progesterone and selective mPRs ligands in HepG2 cells were the same in terms of suppression of proliferation and stimulation of apoptotic changes in outer membranes, therefore, they were mediated through interaction with mPRβ. JNK is a member of the signaling cascade activated in these cells by the studied steroids.
Collapse
Affiliation(s)
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
9
|
Acharjee M, Ali MH, Jyoti MMS, Rezanujjaman M, Hassan MM, Rana MR, Hossain MF, Kodani S, Tokumoto T. The antagonistic activity of Padina arborescens extracts on mPRα. Nat Prod Res 2022; 37:1872-1876. [PMID: 36067477 DOI: 10.1080/14786419.2022.2120873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The current study attempted to evaluate the antagonistic activity of compounds isolated and purified from the marine algae Padina arborescens during cultivation. The compounds were collected on a filter, concentrated on ODS columns and separated by HPLC. Two peaks that showed competitive progesterone binding activity with membrane progesterone receptor α (mPRα) were purified. Their physiological activity was further uncovered by in vitro and in vivo oocyte maturation and ovulation-inducing assays using zebrafish. The compounds inhibited the induction of oocyte maturation and ovulation. Moreover, the results showed that the compounds have antagonistic activity against mPRα. The purified compounds with antagonistic activity against mPRα would be considered as new pharmaceutical candidate.
Collapse
Affiliation(s)
- Mrityunjoy Acharjee
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Hasan Ali
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Maisum Sarwar Jyoti
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Rezanujjaman
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Maksudul Hassan
- Biological Science Course, Graduate School of Science, Shizuoka University, Shizuoka, Japan
| | - Md Rubel Rana
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Forhad Hossain
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Shinya Kodani
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan.,Biological Science Course, Graduate School of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
10
|
Alyami BA, Ejaz I, Mahnashi MH, Alqahtani YS, Alqarni AO, Saeed Jan M, Sadiq A, Rashid U. Design, synthesis, antiproliferative activity, estrogen receptors binding affinity of C-3 pregnenolone-dihydropyrimidine derivatives for the treatment of breast cancer. Steroids 2022; 185:109059. [PMID: 35679910 DOI: 10.1016/j.steroids.2022.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer (BCa) is very common malignancy and globally, has become the second leading cause of cancer death among women. For the treatment of BCa, estrogen receptors-alpha (ERα) has proven to be a therapeutic target. In continuation of our previous reported dihydropyrimidine-based pregnenolone derivatives, we modified at C-3 hydroxyl group. Structural architecture of estrogen receptors (ER) with excellent ER binding affinity was used for modification. MTT assay was used to evaluate the synthesized steroidal analogs for their antiproliferative activities against ER-positive MCF-7, ER-negative MDA-MB-231 (ER-) breast cancer cells and non-cancerous HEK-293 cells. Structure activity relationship (SAR) studies revealed that diethanolamine containing pregnenolone derivatives showed significant cytotoxicity against ER + MCF-7 and also showed good binding affinity with ERα and are relatively safe against HEK-293 cell model. Docking studies demonstrated that high binding affinity of diethanolamine analogs is due to their binding interaction with key amino acid residues present in the binding site of Erα.
Collapse
Affiliation(s)
- Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Iqra Ejaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | | | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000 Dir (L), KP, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| |
Collapse
|
11
|
Lu T, Xu HR, Dong W, Dong H. Expression and prognosis analysis of PAQR5 in kidney cancer. Front Oncol 2022; 12:955510. [PMID: 36119517 PMCID: PMC9471140 DOI: 10.3389/fonc.2022.955510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Progestin and adipoQ receptor 5 (PAQR5) affects the development of various malignancies and is specifically expressed in kidney. However, the role of PAQR5 in renal carcinoma remains unclear. We assessed the state of PAQR5 expression in kidney renal clear cell carcinoma (KIRC) by The Cancer Genome Atlas and Gene Expression Omnibus datasets. Moreover, immunohistochemistry was performed to observe the expressions of PAQR5 protein in tumor tissues. The relationships between PAQR5 expression and clinical characteristics were investigated by UALCAN. Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan–Meier plotter were used to analyze the effect of PAQR5 expression levels on overall survival and relapse-free survival (RFS). The re lationships between clinical characteristics and survival were also evaluated by univariate and multifactorial Cox regression. Gene Ontology term analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and gene set enrichment analysis were performed on PAQR5 to explain the enrichment pathways and functions. Protein and protein interactions were explained by GeneMANIA and STRING. We also explored the relevance of PAQR5 to tumor immune cell infiltration and immunomodulatory molecules by TIMER and GEPIA. Finally, we explored the correlation of PAQR5 with the pathway proteins STATs, HIF-1α, and mTOR using the GSE40435 dataset. PAQR5 expression was low in KIRC and correlated significantly with clinical characteristics including cancer stage, tumor grade, and nodal metastasis status. Low PAQR5 expression was significantly associated with poorer survival. Cox regression analysis indicated that upregulation of PAQR5 was an independent factor for a good prognosis of KIRC. PAQR5 downregulation was associated mainly with STAT3 target upregulation, tumorigenesis, and poor differentiation. PAQR5 expression also correlated positively with B cells, neutrophils, macrophages, and dendritic cells and negatively with the infiltration of FOXP3+ Treg cells and the immune checkpoint molecules PD-1, CTLA4, and LAG3. Moreover, PAQR5 expression in KIRC was negatively correlated with the pathway proteins STAT1/2/3/4/5A, HIF-1α, and mTOR. PAQR5 is an excellent predictor of KIRC prognosis and may be a potential molecular therapeutic target.
Collapse
|
12
|
Ejaz I, Javed MA, Jan MS, Ikram M, Sadiq A, Ahmad S, Rashid U. Rational design, synthesis, antiproliferative activity against MCF-7, MDA-MB-231 cells, estrogen receptors binding affinity, and computational study of indenopyrimidine-2,5-dione analogs for the treatment of breast cancer. Bioorg Med Chem Lett 2022; 64:128668. [PMID: 35276362 DOI: 10.1016/j.bmcl.2022.128668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Based on the structural architecture of estrogen receptors (ER) agonists/antagonists, we rationally designed and synthesized indenopyrimidine-2,5-dione analogs as a starting point of current research targeting estrogen receptors. These analogs were evaluated for their antiproliferative activities against breast cancer MCF-7 (ER+), MDA-MB-231 (ER-) and non-cancerous HEK-293 cells using MTT assay. Compounds with high antiproliferative activity against MCF-7 breast cancer cells were found devoid of cytotoxicity against HEK-293 cells. Competitive binding assay of estrogen receptors ERα and ERβ showed that diethanolamine derivative of 4-trifluoromethyl phenyl derivative 30 displayed 77.5-fold strong binding affinity towards ERα (IC50 = 0.004 μM) as compared to ERβ (IC50 = 0.31 μM). The calculated RBA value of compound 30 indicated that it has greater affinity with ER than estradiol. By docking studies, we demonstrated that high binding affinity with ERα is due to binding orientation and interaction of CF3 with a number of key amino acid residues present in the active site of ERα.
Collapse
Affiliation(s)
- Iqra Ejaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Muhammad Aamir Javed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | | | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| |
Collapse
|
13
|
Slayden OD, Luo F, Bishop CV. Physiological Action of Progesterone in the Nonhuman Primate Oviduct. Cells 2022; 11:1534. [PMID: 35563839 PMCID: PMC9100958 DOI: 10.3390/cells11091534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Therapies that target progesterone action hold potential as contraceptives and in managing gynecological disorders. Recent literature reviews describe the role of steroid hormones in regulating the mammalian oviduct and document that estrogen is required to stimulate epithelial differentiation into a fully functional ciliated and secretory state. However, these reviews do not specifically address progesterone action in nonhuman primates (NHPs). Primates differ from most other mammals in that estrogen levels are >50 pg/mL during the entire menstrual cycle, except for a brief decline immediately preceding menstruation. Progesterone secreted in the luteal phase suppresses oviductal ciliation and secretion; at the end of the menstrual cycle, the drop in progesterone triggers renewed estrogen-driven tubal cell proliferation ciliation secretory activity. Thus, progesterone, not estrogen, drives fallopian tube cycles. Specific receptors mediate these actions of progesterone, and synthetic progesterone receptor modulators (PRMs) disrupt the normal cyclic regulation of the tube, significantly altering steroid receptor expression, cilia abundance, cilia beat frequency, and the tubal secretory milieu. Addressing the role of progesterone in the NHP oviduct is a critical step in advancing PRMs as pharmaceutical therapies.
Collapse
Affiliation(s)
- Ov D Slayden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Health & Science University, Portland, OR 97239, USA
| | - Fangzhou Luo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR 97006, USA
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Levina IS, Shchelkunova TA, Polikarpova AV, Kuznetsov YV, Zavarzin IV. Synthesis of 19-hydroxypregn-4-en-20-one and 19-hydroxy-5β-pregn-3-en-20-one that selectively bind to membrane progesterone receptors, and assessment of their immunomodulatory effects. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Goncharov AI, Levina IS, Shliapina VL, Morozov IA, Rubtsov PM, Zavarzin IV, Smirnova OV, Shchelkunova TA. Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1446-1460. [PMID: 34906046 DOI: 10.1134/s0006297921110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors - 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02). The goal of this work is to study the effect of these compounds on proliferation and death of human pancreatic adenocarcinoma cells BxPC3 and involvement of the two kinases (p38 MAPK and JNK) in signaling pathways activated by progestins through mPRs. It was shown that progesterone and the compound LS-01 significantly (p < 0.05) inhibited the BxPC3 cell viability, with JNK serving as a mediator. The identified targets of these two steroids are the genes of the proteins Ki67, cyclin D1, PCNA, and p21. Progesterone and the compound LS-01 significantly (p < 0.05) stimulate DNA fragmentation, enhancing the cell death. The p38 mitogen-activated protein kinase (MAPK) is a key mediator of this process. The BCL2A1 protein gene was identified as a target of both steroids. The compound LS-02 significantly (p < 0.05) alters membrane permeability and changes the exposure of phosphatidylserine on the outer membrane leaflet, also enhancing the cell death. This compound acts on these processes by activating both kinases, JNK and p38 MAPK. The compound LS-02 targets the genes encoding the proteins HRK, caspase 9, and DAPK.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
16
|
Abstract
Steroid hormones bind receptors in the cell nucleus and in the cell membrane. The most widely studied class of steroid hormone receptors are the nuclear receptors, named for their function as ligand-dependent transcription factors in the cell nucleus. Nuclear receptors, such as estrogen receptor alpha, can also be anchored to the plasma membrane, where they respond to steroids by activating signaling pathways independent of their function as transcription factors. Steroids can also bind integral membrane proteins, such as the G protein-coupled estrogen receptor. Membrane estrogen and progestin receptors have been cloned and characterized in vitro and influence the development and function of many organ systems. Membrane androgen receptors were cloned and characterized in vitro, but their function as androgen receptors in vivo is unresolved. We review the identity and function of membrane proteins that bind estrogens, progestins, and androgens. We discuss evidence that membrane glucocorticoid and mineralocorticoid receptors exist, and whether glucocorticoid and mineralocorticoid nuclear receptors act at the cell membrane. In many cases, integral membrane steroid receptors act independently of nuclear steroid receptors, even though they may share a ligand.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Daniel A Gorelick, PhD, One Baylor Plaza, Alkek Building N1317.07, Houston, TX, 77030-3411, USA.
| |
Collapse
|