1
|
Yu Y, Chen Y, Wang L, Cheng J, Du M, Pan S. Rno-miR-130b Attenuates Lipid Accumulation Through Promoting Apoptosis and Inhibiting Differentiation in Rat Intramuscular Adipocytes. Int J Mol Sci 2025; 26:1399. [PMID: 40003868 PMCID: PMC11855280 DOI: 10.3390/ijms26041399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Our previous studies have shown that miR-130b can significantly inhibit subcutaneous fat deposition in pigs. This study aims to further investigate its effect on lipid accumulation at early-stage (24 and 48 h) and late-stage (7 d) adipogenic differentiation and to clarify potential mechanisms using primary rat intramuscular preadipocytes (IMAs). Results showed that at 24 h and 48 h, miR-130b overexpression significantly reduced lipid deposition by inhibiting proliferation and inducing apoptosis. Furthermore, miR-130b overexpression significantly inhibited the expression of cell cycle and apoptosis marker genes. Specifically, the mRNA expression of Ccnd1 tended to decrease, while the BCL2 protein level was significantly decreased at 48 h. In contrast, miR-130b inhibition significantly increased the BCL2 protein level. At 7 d, the miR-130b mimic significantly decreased intracellular TG content and tended to decrease Hsd11b1 mRNA expression while significantly promoting Lpl mRNA expression. Additionally, the miR-130b mimic significantly increased the CASP3 protein level and tended to decrease the BCL2 protein level. In conclusion, our data indicated for the first time that miR-130b could reduce lipid deposition in rat IMAs through different mechanisms: at the early stage of differentiation by inhibiting proliferation and promoting apoptosis and at the late stage by inhibiting adipogenic differentiation, promoting lipid hydrolysis, and promoting apoptosis.
Collapse
Affiliation(s)
- Yichen Yu
- Guangling College, Yangzhou University, Yangzhou 225009, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Ji Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Shifeng Pan
- Guangling College, Yangzhou University, Yangzhou 225009, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Dong A, Yu X, Zhang Y, Liu L, Liu F, Song W, Zheng J. Anti-Müllerian hormone regulates ovarian granulosa cell growth in PCOS rats through SMAD4. Int J Gynaecol Obstet 2025. [PMID: 39865361 DOI: 10.1002/ijgo.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS. METHODS A DHEA-induced PCOS rat model was established, and ovarian granulosa cells were extracted and identified. Anti-Müllerian hormone (AMH) and SMAD family member 4 (SMAD4) expression was detected in the serum, ovarian tissue and ovarian granulosa cells of each group, and proliferating cell nuclear antigen (PCNA), BCL2-associated 2 (BAX), cleaved caspase-3 and BCL-2 protein expression was detected by Western blot in ovarian granulosa cells. Recombinant anti-Müllerian hormone (rAMH) was administered at different concentrations to act on normal rat ovarian granulosa cells, cell proliferation was detected by cell counting kit-8 (CCK-8), apoptosis was detected by flow cytometry, and SMAD4, caspase-3, BCL-2 and cyclin A proteins were detected by Western blot. SMAD4-siRNA was transfected into rat ovarian granulosa cells of the PCOS group, and PCNA and BAX were detected by Western blot. RESULTS Compared with those in the control group, the expression of AMH and SMAD4 was increased in the ovarian tissues and granulosa cells of rats in the PCOS group, the expression of PCNA and BCL-2 proteins was decreased in the ovarian granulosa cells of the PCOS group, the expression of BAX proteins was increased, and the expression of cleaved caspase-3 was increased. Western blot results indicated that rAMH upregulated SMAD4 and caspase-3 protein expression in granulosa cells and downregulated cyclin A and BCL-2 protein expression. CCK-8 and flow cytometry results indicated that AMH decreased granulosa cells proliferation and increased apoptosis. SiRNA knockdown of SMAD4 gene increased PCNA and BCL-2 protein expression in the granulosa cells of PCOS rats and decreased BAX and cleaved caspase-3 protein expression. CONCLUSION AMH may be involved in regulating impaired ovarian granulosa cells development in PCOS rats via SMAD4.
Collapse
Affiliation(s)
- Anqi Dong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaomeng Yu
- Department of Obstetrics, Women and Children's Hospital of Jinzhou, Jinzhou, Liaoning, China
| | - Yun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fanglin Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jindan Zheng
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
3
|
Zhang T, Fang J, Hu J, Kong Y, Jiang R, Wang H, Yang G, Yao G. Downregulation of CASC15 attenuates the symptoms of polycystic ovary syndrome by affecting granulosa cell proliferation and regulating ovarian follicular development. Mol Cell Endocrinol 2024; 592:112322. [PMID: 38942281 DOI: 10.1016/j.mce.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a type of follicular dysplasia with an unclear pathogenesis, posing certain challenges in its diagnosis and treatment. Cancer susceptibility candidate 15 (CASC15), a long non-coding RNA closely associated with tumour development, has been implicated in PCOS onset and development. Therefore, this study aimed to investigate the molecular mechanisms underlying PCOS by downregulating CASC15 expression in both in vitro and in vivo models. We explored the potential regulatory relationship between CASC15 expression and PCOS by examining cell proliferation, cell cycle dynamics, cell autophagy, steroid hormone secretion capacity, and overall ovarian function in mice. We found that CASC15 expression in granulosa cells derived from patients with PCOS was significantly higher than those of the normal group (P < 0.001). In vitro experiments revealed that downregulating CASC15 significantly inhibited cell proliferation, promoted apoptosis, induced G1-phase cell cycle arrest, and influenced cellular autophagy levels. Moreover, downregulating CASC15 affected the follicular development process in newborn mouse ovaries. In vivo studies in mice demonstrated that disrupting CASC15 expression improved PCOS-related symptoms such as polycystic changes and hyperandrogenism, and significantly affected ovulation induction and embryo implantation in pregnant mice. Overall, CASC15 was highly expressed in granulosa cells of patients with PCOS and its downregulation improved PCOS-related symptoms by influencing granulosa cell function and follicular development in mice.
Collapse
Affiliation(s)
- Tongwei Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junnan Fang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
5
|
Huang L, Fu Y, Cao J, Zhai J. Clinical Value and Mechanism Exploration of Serum miR-379 in Obesity-Polycystic Ovary Syndrome. Int J Womens Health 2024; 16:1149-1157. [PMID: 38919684 PMCID: PMC11198001 DOI: 10.2147/ijwh.s427997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 06/27/2024] Open
Abstract
Objective As a common endocrine and metabolic disorder, polycystic ovary syndrome (PCOS) is mostly associated with an obese phenotype. The present research focuses on the clinical significance of miR-379 in obesity-PCOS and attempts to elucidate its potential mechanisms. Methods Healthy individuals (n = 46), obesity-PCOS (n = 92), and non-obesity PCOS (n = 31) subjects were enrolled. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to examine the level of serum miR-379. The receiver operating characteristic (ROC) curve and logistic regressions were applied to reveal the diagnostic significance. Dual luciferase reporters were performed to validate the targeting relationships. And cell count kit (CCK-8) assay was used to detect cell proliferation. Results Serum miR-379 was highly expressed in PCOS patients (P < 0.05), in especially obesity-PCOS patients. Higher miR-379 was associated with greater body mass index (BMI), higher bioavailable testosterone (bT), and greater insulin resistance (IR). Additionally, miR-379 was an independent risk factor for the development of obesity-PCOS. The sensitivity of miR-379 in identifying patients with obesity-PCOS from healthy or non-obesity-PCSO patients was 81.52% and 72.83%, and the specificity was 86.96% and 80.65%. Semaphorin 3 A (SEMA3A) was identified as a target of miR-379 and was reduced in the patients with obesity PCOS (P < 0.05). Inhibition of miR-375 reduced KGN proliferation, but this reduction was partially restored by silencing of SEMA3A (P < 0.05). Conclusion Elevated miR-379 assists the diagnosis of obesity-PCOS and regulates the proliferation of KGN by targeting SEMA3A engaged in disease development.
Collapse
Affiliation(s)
- Lu Huang
- Department of Obstetrics and Gynecology, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Yujing Fu
- Department of Obstetrics and Gynecology, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Jinghong Cao
- Department of Obstetrics and Gynecology, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Jianjun Zhai
- Department of Obstetrics and Gynecology, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| |
Collapse
|
6
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Babu A, Ramanathan G. Multi-omics insights and therapeutic implications in polycystic ovary syndrome: a review. Funct Integr Genomics 2023; 23:130. [PMID: 37079114 DOI: 10.1007/s10142-023-01053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease that causes adverse effects in women in their reproductive phase. Nonetheless, the molecular mechanisms remain unclear. Over the last decade, sequencing and omics approaches have advanced at an increased pace. Omics initiatives have come to the forefront of biomedical research by presenting the significance of biological functions and processes. Thus, multi-omics profiling has yielded important insights into understanding the biology of PCOS by identifying potential biomarkers and therapeutic targets. Multi-omics platforms provide high-throughput data to leverage the molecular mechanisms and pathways involving genetic alteration, epigenetic regulation, transcriptional regulation, protein interaction, and metabolic alterations in PCOS. The purpose of this review is to outline the prospects of multi-omics technologies in PCOS research by revealing novel biomarkers and therapeutic targets. Finally, we address the knowledge gaps and emerging treatment strategies for the management of PCOS. Future PCOS research in multi-omics at the single-cell level may enhance diagnostic and treatment options.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Wu Z, Yang T, Ma H. Molecular mechanism of modified Huanglian Wendan decoction in the treatment of polycystic ovary syndrome. Medicine (Baltimore) 2023; 102:e33212. [PMID: 37058016 PMCID: PMC10101291 DOI: 10.1097/md.0000000000033212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 04/15/2023] Open
Abstract
To investigate the mechanism of modified Huanglian Wendan decoction in the intervention of polycystic ovary syndrome (PCOS) by network pharmacology and molecular docking. The ingredients and targets of modified Huanglian Wendan decoction were retrieved from the traditional Chinese medicine Systems Pharmacology database. Related targets of PCOS were screened by Comparative Toxicogenomics Database database. Cytoscape 3.7.2 (https://cytoscape.org/) was used to draw the target network diagram of "traditional Chinese medicine - ingredient - PCOS," STRING database was used to construct the target protein interaction network. NCA tool of Cystoscape 3.7.2 was used to carried out topology analysis on PPI network, core components and key targets were obtained. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were carried out for the intersection targets by David database. AutoDockTools 1.5.6 software (https://autodock.scripps.edu/) was used to conduct molecular docking verification of key components and key targets. Ninety-one ingredients of the modified Huanglian Wendan decoction and 23,075 diseases targets were obtained, 155 Intersection targets of the drug and disease were obtained by R language, Veen plot was drawn. Gene ontology enrichment analysis obtained 432 biological processes, 67 cell components, 106 molecular functions. Fifty-four Kyoto encyclopedia of genes and genomes enrichment pathways (P < .05) including tumor necrosis factor, hypoxia-induced factors-1, calcium, and drug metabolism-cytochrome P450 signaling pathway. Molecular docking showed quercetin, luteolin, kaempferol, and baicalein were stable in docking with core targets. Network pharmacology and molecular docking were used to preliminarily study the mechanism of action of modified Huanglian Wendan decoction in the treatment of PCOS, which laid foundation for future experimental research and clinical application.
Collapse
Affiliation(s)
- Zhaojing Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- First College of Clinical Medicine, Shandong University of Traditional Chinese, Medicine, Jinan, Shandong, China
| | - Tiantian Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongbo Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Bhandary P, Shetty PK, Manjeera L, Patil P. Hormonal, genetic, epigenetic and environmental aspects of polycystic ovarian syndrome. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Szukiewicz D, Trojanowski S, Kociszewska A, Szewczyk G. Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)-Searching for Epigenetic Factors. Int J Mol Sci 2022; 23:ijms232314663. [PMID: 36498989 PMCID: PMC9736994 DOI: 10.3390/ijms232314663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age. Despite its incidence, the syndrome is poorly understood and remains underdiagnosed, and female patients are diagnosed with a delay. The heterogenous nature of this complex disorder results from the combined occurrence of genetic, environmental, endocrine, and behavioral factors. Primary clinical manifestations of PCOS are derived from the excess of androgens (anovulation, polycystic ovary morphology, lack of or scanty, irregular menstrual periods, acne and hirsutism), whereas the secondary manifestations include multiple metabolic, cardiovascular, and psychological disorders. Dietary and lifestyle factors play important roles in the development and course of PCOS, which suggests strong epigenetic and environmental influences. Many studies have shown a strong association between PCOS and chronic, low-grade inflammation both in the ovarian tissue and throughout the body. In the vast majority of PCOS patients, elevated values of inflammatory markers or their gene markers have been reported. Development of the vicious cycle of the chronic inflammatory state in PCOS is additionally stimulated by hyperinsulinemia and obesity. Changes in DNA methylation, histone acetylation and noncoding RNA levels are presented in this review in the context of oxidative stress, reactive oxygen species, and inflammatory signaling in PCOS. Epigenetic modulation of androgenic activity in response to inflammatory signaling is also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
- Correspondence:
| | - Seweryn Trojanowski
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Anna Kociszewska
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
11
|
Bai L, Gong J, Guo Y, Li Y, Huang H, Liu X. Construction of a ceRNA network in polycystic ovary syndrome (PCOS) driven by exosomal lncRNA. Front Genet 2022; 13:979924. [PMID: 36406137 PMCID: PMC9672461 DOI: 10.3389/fgene.2022.979924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 01/26/2025] Open
Abstract
Polycystic ovary syndrome (PCOS), a common and frustrating syndrome in women of reproductive age, is characterized by symptoms including hyperandrogenemia, ovulation dysfunction, and polycystic ovaries. The role of competitive endogenous RNA (ceRNA) networks is receiving increasing attention and has been reported in multiple complicated diseases, such as various carcinomas, endometriosis, and tubal factor infertility. However, the association of ceRNA networks with the pathogenesis of PCOS remains unclear. This study aimed to construct a ceRNA network orchestrated by exosomal lnRNA and circRNA in PCOS. We screened RNA data of 34 samples from the Gene Expression Omnibus (GEO) database for differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs), and circRNA associated with the progression of PCOS (PCOS, n = 17 vs. normal, n = 17). A protein-protein interaction (PPI) network, gene set enrichment analysis (GSEA), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Importantly, the function of the ceRNA network was explored using GO and KEGG enrichment analyses. We identified 46 DELs (25 upregulated and 21 downregulated), 31 DEMs (20 upregulated and 11 downregulated), 165 DEGs (52 upregulated and 113 downregulated), and 1 differentially expressed circRNA. The PPI network had 79 nodes and 112 edges. The GSEA results showed that these genes were mainly related to oxidative phosphorylation; TNF signaling pathways; and valine, leucine, and isoleucine degradation. GO and KEGG analyses revealed that the DEGs were significantly enriched in lipid metabolism, peroxisome proliferator-activated receptor (PPAR) signaling pathways, and fatty acid metabolism. Additionally, we constructed a novel PCOS-associated lncRNA-miRNA-mRNA ceRNA triple network and a circRNA-related network. Thereafter, we described the potential roles played by follicular fluid exosomes in PCOS. Our present study describes the molecular pathogenesis of PCOS in human ovarian granulosa cells at the post-transcriptional level, which provides new insights for the clinical diagnosis and treatment of PCOS and further scientific research.
Collapse
Affiliation(s)
- Lilian Bai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Junxing Gong
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yanyan Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuchen Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Hefeng Huang
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
12
|
Cui X, Zhou S, Lin Y. Protective effects of liquiritin on polycystic ovary syndrome through modulating ovarian granulosa cell proliferation and apoptosis via miR-206/PI3K/AKT pathway. Cytotechnology 2022; 74:385-393. [DOI: 10.1007/s10616-022-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/10/2022] [Indexed: 01/09/2023] Open
|
13
|
Wu YX, Lin YS, Li SC, Yao X, Cheng M, Zhu L, Liu HY. microRNA-194 is increased in polycystic ovary syndrome granulosa cell and induce KGN cells apoptosis by direct targeting heparin-binding EGF-like growth factor. Reprod Biol Endocrinol 2021; 19:170. [PMID: 34814928 PMCID: PMC8609843 DOI: 10.1186/s12958-021-00850-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine-related follicular developmental disorder that affects 50 %-70 % of reproductive-aged women diagnosed with ovulation-related infertility. Abnormal proliferation and apoptosis of granulosa cells (GCs) are thought to be the critical factors leading to abnormal maturation of follicles. It has been shown that microRNAs (miRNAs) exert a significant influence in the pathogenesis of PCOS; however, the relationship between miRNA, PCOS, and GC apoptosis is not entirely understood. METHODS To clarify the effect of miR-194 in PCOS, CCK-8, Ki67 staining, AO/EB, and flow cytometry assays were used to assess cell growth, proliferation, and apoptosis in KGN cells, which were artificially stimulated to overexpress miR-194. Luciferase reporter assays and rescue experiments were used to elucidate the mechanism underlying miR-194 in PCOS. RESULTS miR-194 expression was significantly up-regulated in rat models of PCOS and the ovarian GCs of PCOS patients. miR-194 suppression promoted KGN cell growth and proliferation. miR-194 overexpression also induced cell apoptosis, while miR-194 downregulation had an opposite effect. Furthermore, up-regulating heparin-binding EGF-like growth factor (HB-EGF) expression rescued the pro-apoptotic effects of miR-194 upregulation on KGN cells. CONCLUSIONS miR-194 is increased in PCOS granulosa cell and may function as a novel biomarker and therapeutic target for KGN cells via HB-EGF regulation.
Collapse
Affiliation(s)
- Yi-Xuan Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Shan Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si-Chen Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi Yao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingwei Cheng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Ying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangdong, Guangzhou, China.
| |
Collapse
|