1
|
Palumbo M, Ugolotti M, Zimetti F, Adorni MP. Anti-atherosclerotic effects of natural compounds targeting lipid metabolism and inflammation: Focus on PPARs, LXRs, and PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:39-53. [PMID: 39877131 PMCID: PMC11773090 DOI: 10.1016/j.athplu.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
A large body of evidence has shown that modulation of the nuclear receptors peroxisome proliferator-activated receptors (PPARs), the liver X receptors (LXRs), the proprotein convertase subtilisin/kexin type 9 (PCSK9) and inflammatory processes by natural compounds has hypolipidemic and anti-atherosclerotic effects. These beneficial outcomes are certainly related to the crucial function of these targets in maintaining cholesterol homeostasis and regulating systemic inflammation. Currently, the therapeutic scenario for cardiovascular diseases (CVD) offers a plethora of widely validated and functional pharmacological treatments to improve the health status of patients. However, patients are increasingly sceptical of pharmacological treatments which are often associated with moderate to severe side effects. The aim of our review is to provide a collection of the most recent scientific evidence on the most common phytochemicals, used for centuries in the Mediterranean diet and traditional chinese medicine that act on these key regulators of cholesterol homeostasis and systemic inflammation, which could constitute important tools for CVD management.
Collapse
Affiliation(s)
| | | | | | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy
| |
Collapse
|
2
|
Khairinisa MA, Latarissa IR, Athaya NS, Charlie V, Musyaffa HA, Prasedya ES, Puspitasari IM. Potential Application of Marine Algae and Their Bioactive Metabolites in Brain Disease Treatment: Pharmacognosy and Pharmacology Insights for Therapeutic Advances. Brain Sci 2023; 13:1686. [PMID: 38137134 PMCID: PMC10741471 DOI: 10.3390/brainsci13121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Seaweeds, also known as edible marine algae, are an abundant source of phytosterols, carotenoids, and polysaccharides, among other bioactive substances. Studies conducted in the past few decades have demonstrated that substances derived from seaweed may be able to pass through the blood-brain barrier and act as neuroprotectants. According to preliminary clinical research, seaweed may also help prevent or lessen the symptoms of cerebrovascular illnesses by reducing mental fatigue, preventing endothelial damage to the vascular wall of brain vessels, and regulating internal pressure. They have the ability to control neurotransmitter levels, lessen neuroinflammation, lessen oxidative stress, and prevent the development of amyloid plaques. This review aims to understand the application potential of marine algae and their influence on brain development, highlighting the nutritional value of this "superfood" and providing current knowledge on the molecular mechanisms in the brain associated with their dietary introduction.
Collapse
Affiliation(s)
- Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Nadiyah Salma Athaya
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Vandie Charlie
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Hanif Azhar Musyaffa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia;
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83126, Indonesia
| | - Irma Melyani Puspitasari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Zhan N, Wang B, Martens N, Liu Y, Zhao S, Voortman G, van Rooij J, Leijten F, Vanmierlo T, Kuipers F, Jonker JW, Bloks VW, Lütjohann D, Palumbo M, Zimetti F, Adorni MP, Liu H, Mulder MT. Identification of Side Chain Oxidized Sterols as Novel Liver X Receptor Agonists with Therapeutic Potential in the Treatment of Cardiovascular and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021290. [PMID: 36674804 PMCID: PMC9863018 DOI: 10.3390/ijms24021290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The nuclear receptors-liver X receptors (LXR α and β) are potential therapeutic targets in cardiovascular and neurodegenerative diseases because of their key role in the regulation of lipid homeostasis and inflammatory processes. Specific oxy(phyto)sterols differentially modulate the transcriptional activity of LXRs providing opportunities to develop compounds with improved therapeutic characteristics. We isolated oxyphytosterols from Sargassum fusiforme and synthesized sidechain oxidized sterol derivatives. Five 24-oxidized sterols demonstrated a high potency for LXRα/β activation in luciferase reporter assays and induction of LXR-target genes APOE, ABCA1 and ABCG1 involved in cellular cholesterol turnover in cultured cells: methyl 3β-hydroxychol-5-en-24-oate (S1), methyl (3β)-3-aldehydeoxychol-5-en-24-oate (S2), 24-ketocholesterol (S6), (3β,22E)-3-hydroxycholesta-5,22-dien-24-one (N10) and fucosterol-24,28 epoxide (N12). These compounds induced SREBF1 but not SREBP1c-mediated lipogenic genes such as SCD1, ACACA and FASN in HepG2 cells or astrocytoma cells. Moreover, S2 and S6 enhanced cholesterol efflux from HepG2 cells. All five oxysterols induced production of the endogenous LXR agonists 24(S)-hydroxycholesterol by upregulating the CYP46A1, encoding the enzyme converting cholesterol into 24(S)-hydroxycholesterol; S1 and S6 may also act via the upregulation of desmosterol production. Thus, we identified five novel LXR-activating 24-oxidized sterols with a potential for therapeutic applications in neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Na Zhan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Boyang Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Nikita Martens
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Yankai Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shangge Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Gardi Voortman
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Frank Leijten
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Correspondence: (H.L.); (M.T.M.)
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Correspondence: (H.L.); (M.T.M.)
| |
Collapse
|
4
|
Lizard G, Poirot M, Iuliano L. Celebrating the 10th anniversary of the creation of the European Network for Oxysterol Research (ENOR). J Steroid Biochem Mol Biol 2022; 221:106114. [PMID: 35421569 PMCID: PMC9759196 DOI: 10.1016/j.jsbmb.2022.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer; The French Network for Nutrition and Cancer Research (NACRe Network); INSERM UMR 1037-CNRS U 5071-Université de Toulouse, 31037, Toulouse, France.
| | - Luigi Iuliano
- UOC of Internal Medicine, Sapienza University of Rome, ICOT Hospital, Latina, & Vascular Biology & Mass Spectrometry Laboratory, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| |
Collapse
|
5
|
Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Alagulakshmi S, Singaraj P, Pandian S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci 2021; 22:12691. [PMID: 34884496 PMCID: PMC8657749 DOI: 10.3390/ijms222312691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
- Department of Biotechnology, Vidhyaa Giri College of Arts and Science, Karaikudi 630 003, India
| | - Sekaran Balaji
- Independent Researcher, Madurai 625 020, India; (S.B.); (P.S.)
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | - Selvaraj Alagulakshmi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
6
|
Lizard G, Poirot M, Iuliano L. European network for oxysterol research (ENOR): 10 th anniversary. J Steroid Biochem Mol Biol 2021; 214:105996. [PMID: 34534668 DOI: 10.1016/j.jsbmb.2021.105996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/11/2023]
Affiliation(s)
- Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000, Dijon, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations", Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM UMR 1037-CNRS U 5071-Université de Toulouse, 31037, Toulouse, France.
| | - Luigi Iuliano
- Laboratory of Vascular Biology and Mass Spectrometry, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy.
| |
Collapse
|