1
|
Unal İ. Green Synthesis of Multi-Walled Carbon Nanotube-Reinforced Hydroxyapatite Doped with Silver and Silver-Core Selenium-Shell Nanoparticles: Synthesis, Characterization, and Biological Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:179. [PMID: 39940155 PMCID: PMC11820691 DOI: 10.3390/nano15030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Hydroxyapatite (HAp) is widely used in biomedical applications due to its biocompatibility, osteoconductivity, and bioactivity. However, its low mechanical strength, tendency toward rapid corrosion, and lack of bactericidal properties present significant limitations in applications. This study aimed to improve the properties of HAp by reinforcing it with multi-walled carbon nanotubes (MWCNTs) and doping it with silver nanoparticles (AgNPs) and silver-core selenium-shell nanoparticles (Ag@SeNPs). Ocimum basilicum extract was used as both a reducing and stabilizing agent in the synthesis of nanoparticles using an environmentally friendly and non-toxic method as an alternative to traditional methods. The synthesized HAp, HAp/MWCNT, Ag-HAp/MWCNT, and Ag@Se-HAp/MWCNT nanocomposites were characterized by TEM, SEM, XRD, Raman spectroscopy, and BET analysis. BET analysis showed a reduction in surface area from 109.4 m2/g for pure HAp to 71.4 m2/g, 47.5 m2/g, and 35.3 m2/g for HAp/MWCNTs, Ag- HAp/MWCNTs, and Ag@Se-HAp/MWCNTs, respectively. Antimicrobial activities against P. aeruginosa, E. coli, S. aureus, E. faecalis, and C. albicans were evaluated. HAp and HAp/MWCNT did not show any antimicrobial activity, while Ag-HAp/MWCNTs showed inhibition zones of 14 mm for Escherichia coli and 18 mm for Pseudomonas aeruginosa at 5 mg/mL. Ag@Se-MWCNTs/HAp exhibited superior efficacy with inhibition zones of 18 mm, 12 mm, and 20 mm for S. aureus, E. faecalis, and Candida albicans, respectively. The incorporation of Ag@SeNPs enhanced HAp's antibacterial and antifungal properties through a synergistic mechanism.
Collapse
Affiliation(s)
- İlkay Unal
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture Education, Munzur University, 62000 Tunceli, Turkey
| |
Collapse
|
2
|
Bańkosz M, Urbaniak MM, Szwed A, Rudnicka K, Włodarczyk M, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B, Sobczak-Kupiec A. Physicochemical and biological analysis of composite biomaterials containing hydroxyapatite for biological applications. J Biomed Mater Res B Appl Biomater 2023; 111:2077-2088. [PMID: 37596849 DOI: 10.1002/jbm.b.35309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue regeneration is one of the main areas of tissue engineering. A particularly important aspect is the development of new innovative composite materials intended for bone tissue engineering and/or bone substitution. In this article, the synthesis and characterization of ceramic-polymer composites based on polyvinylpyrrolidone, poly(vinyl alcohol) and hydroxyapatite (HAp) have been presented. The first part of the work deals with the synthesis and characterization of the ceramic phase. It was demonstrated that the obtained calcium phosphate is characterized by a heterogeneity and porosity indicating simultaneously its large specific surface area. Additionally, in the wound healing test, it was shown that the obtained powder supports the regeneration of L929 cells. Next, HAp-containing composite materials were obtained in the waste-free photopolymerization process and characterized in detail. It was proved that the obtained composites were characterized by sorption properties and stability during 12-day incubation in simulated physiological liquids. Importantly, the obtained composites showed no cytotoxic effect against the L929 murine fibroblasts - the cell viability was 94.5%. Then, confocal microscopy allowed to observe that murine fibroblasts effectively colonized the surface of the obtained polymer-ceramic composites, covering the entire surface of the biomaterial. Thus, the obtained results confirm the high potential of the obtained composites in the application of bone tissue regenerative medicine.
Collapse
Affiliation(s)
- Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Szwed
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
3
|
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel) 2023; 10:1367. [PMID: 38135958 PMCID: PMC10741145 DOI: 10.3390/bioengineering10121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Hydroxyapatite (HA)-based materials are widely used in the bone defect restoration field due to their stable physical properties, good biocompatibility, and bone induction potential. To further improve their performance with extra functions such as antibacterial activity, various kinds of metal ion-doped HA-based materials have been proposed and synthesized. This paper offered a comprehensive review of metal ion-doped HA-based materials for bone defect restoration based on the introduction of the physicochemical characteristics of HA followed by the synthesis methods, properties, and applications of different kinds of metal ion (Ag+, Zn2+, Mg2+, Sr2+, Sm3+, and Ce3+)-doped HA-based materials. In addition, the underlying challenges for bone defect restoration using these materials and potential solutions were discussed.
Collapse
Affiliation(s)
- Xuan Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Shan Huang
- Changsha Health Vocational College, Changsha 410100, China;
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Pei B, Hu M, Wu X, Lu D, Zhang S, Zhang L, Wu S. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair. Front Bioeng Biotechnol 2023; 11:1230682. [PMID: 37781533 PMCID: PMC10537235 DOI: 10.3389/fbioe.2023.1230682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, bone tissue engineering (BTE) has played an essential role in the repair of bone tissue defects. Although bioactive factors as one component of BTE have great potential to effectively promote cell differentiation and bone regeneration, they are usually not used alone due to their short effective half-lives, high concentrations, etc. The release rate of bioactive factors could be controlled by loading them into scaffolds, and the scaffold microstructure has been shown to significantly influence release rates of bioactive factors. Therefore, this review attempted to investigate how the scaffold microstructure affected the release rate of bioactive factors, in which the variables included pore size, pore shape and porosity. The loading nature and the releasing mechanism of bioactive factors were also summarized. The main conclusions were achieved as follows: i) The pore shapes in the scaffold may have had no apparent effect on the release of bioactive factors but significantly affected mechanical properties of the scaffolds; ii) The pore size of about 400 μm in the scaffold may be more conducive to controlling the release of bioactive factors to promote bone formation; iii) The porosity of scaffolds may be positively correlated with the release rate, and the porosity of 70%-80% may be better to control the release rate. This review indicates that a slow-release system with proper scaffold microstructure control could be a tremendous inspiration for developing new treatment strategies for bone disease. It is anticipated to eventually be developed into clinical applications to tackle treatment-related issues effectively.
Collapse
Affiliation(s)
- Baoqing Pei
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mengyuan Hu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xueqing Wu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Da Lu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shijia Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Le Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuqin Wu
- School of Big Data and Information, Shanxi College of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
6
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|