1
|
Rodriguez KM, Krishnan C, Palmieri‐Smith RM. Number of conditioning trials, but not stimulus intensity, influences operant conditioning of brain responses after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2025; 33:967-976. [PMID: 39324365 PMCID: PMC11848966 DOI: 10.1002/ksa.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE The primary purpose of this randomized, cross-sectional study was to determine whether operant conditioning of motor evoked torque (MEPTORQUE) in individuals with total knee arthroplasty (TKA) increases quadriceps MEPTORQUE responses within a single session and induces acute corticospinal adaptations by producing sustained increases in MEPTORQUE after training. A secondary purpose was to determine if these changes were affected by the stimulus intensity and number of training trials. METHODS Thirty participants were block-randomized into one of three groups based on the participant's active motor threshold (100%, 120%, and 140%) to evaluate the effect of stimulus intensity. Participants received three blocks of conditioning trials (COND), where they trained to increase their MEPTORQUE. Control (CTRL) transcranial magnetic stimulation pulses were provided before and after each COND block to establish baseline corticospinal excitability and to evaluate the effect of the number of training trials. Two MEPTORQUE recruitment curves were collected to evaluate the effect of up-conditioning on acute corticospinal adaptations. RESULTS TKA participants were able to successfully increase their MEPTORQUE in a single session (F3,81 = 10.719, p < 0.001) and induce acute corticospinal adaptations (F1,27 = 20.029, p < 0.001), indicating sustained increases in quadriceps corticospinal excitability due to operant conditioning. While the stimulus intensity used during training did not affect the ability to increase MEPTORQUE (F2,26 = 0.021, n.s.) or its associated acute adaptations (F2,27 = 0.935, n.s.), the number of training trials significantly influenced these outcomes (F3,81 = 10.719, p < 0.001; F3,81 = 4.379, p = 0.007, respectively). CONCLUSION Operant conditioning is a feasible approach for improving quadriceps corticospinal excitability following TKA. While any of the three stimulus intensities evaluated in this study may be used in future operant conditioning interventions, using a low or moderate stimulus intensity and 150 training trials are recommended to improve treatment efficiency and patient adherence. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Kazandra M. Rodriguez
- School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Physical Medicine and RehabilitationMichigan MedicineAnn ArborMichiganUSA
| | - Chandramouli Krishnan
- School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Physical Medicine and RehabilitationMichigan MedicineAnn ArborMichiganUSA
- Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Michigan Robotics InstituteUniversity of MichiganAnn ArborMichiganUSA
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Physical TherapyCollege of Health Sciences, University of Michigan-FlintFlintMichiganUSA
| | - Riann M. Palmieri‐Smith
- School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Orthopaedic SurgeryMichigan MedicineAnn ArborMichiganUSA
| |
Collapse
|
2
|
Rodriguez KM, Moon J, Krishnan C, Palmieri-Smith RM. Conditioning of Motor Evoked Responses After Anterior Cruciate Ligament Reconstruction: Effects of Stimulus Intensity. Sports Health 2025; 17:281-290. [PMID: 38864306 PMCID: PMC11569524 DOI: 10.1177/19417381241257258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Operant conditioning of motor evoked torque (MEPTORQUE) can directly target the corticospinal pathway in patients with anterior cruciate ligament (ACL) reconstruction. However, it remains unclear whether operant conditioning can elicit short-term improvements in corticospinal excitability and whether these improvements are influenced by stimulus intensity. HYPOTHESIS Quadriceps MEPTORQUE responses can be upconditioned in a single session and will elicit short-term adaptations in corticospinal excitability, with higher stimulus intensities eliciting greater effects. STUDY DESIGN Randomized controlled laboratory study. LEVEL OF EVIDENCE Level 2. METHODS Thirty-six participants were assessed during a single session of an operant conditioning protocol. Participants were randomized into 1 of 3 groups for stimulus intensity used during operant conditioning based on the participant's active motor threshold (AMT: 100%, 120%, and 140%). Quadriceps MEPTORQUE amplitude was evaluated during a block of control transcranial magnetic stimulation trials (CTRL) to establish baseline corticospinal excitability, and 3 blocks of conditioning trials (COND) during which participants trained to upcondition their MEPTORQUE. MEPTORQUE recruitment curves were collected to evaluate the effect of operant conditioning on acute corticospinal adaptations. RESULTS Participants with ACL reconstruction could upcondition their MEPTORQUE in a single session (P < 0.01; CTRL, 17.27 ± 1.28; COND, 21.35 ± 1.28 [mean ± standard error [SE] in N·m]), but this ability was not influenced by the stimulus intensity used during training (P = 0.84). Furthermore, significant improvements in corticospinal excitability were observed (P = 0.05; PRE, 687.91 ± 50.15; POST, 761.08 ± 50.15 [mean ± SE in N·m %AMT]), but stimulus intensity did not influence corticospinal adaptations (P = 0.67). CONCLUSION Operant conditioning can elicit short-term neural adaptations in ACL-reconstructed patients. Future operant conditioning paradigms may effectively use any of the 3 stimulus intensities studied herein. CLINICAL RELEVANCE Operant conditioning may be a feasible approach to improve corticospinal excitability after ACL reconstruction.
Collapse
Affiliation(s)
| | - Jungsun Moon
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Chandramouli Krishnan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, Michigan
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Michigan Robotics Institute, University of Michigan, Ann Arbor, Michigan
- Mechanical Engineering, University of Michigan
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
3
|
Rodriguez KM, Palmieri-Smith RM, Krishnan C. Operant Upconditioning of the Quadriceps Motor Evoked Torque as a Means to Improve Quadriceps Function After ACL Reconstruction. Sports Health 2025:19417381251313775. [PMID: 39930348 PMCID: PMC11811944 DOI: 10.1177/19417381251313775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Diminished corticospinal excitability is theorized to contribute to poor quadriceps function after anterior cruciate ligament (ACL) reconstruction. Operant conditioning of the motor evoked torque (MEPTORQUE) is a promising approach capable of improving corticospinal excitability. However, it is unknown whether increasing corticospinal excitability can improve quadriceps function after a short-term operant conditioning intervention in patients with reconstructed ACL. HYPOTHESIS After ACL reconstruction, patients would demonstrate increases in quadriceps strength, voluntary activation, and corticospinal excitability after a 2-week operant conditioning intervention. STUDY DESIGN Randomized controlled clinical trial. LEVEL OF EVIDENCE Level 1. METHODS A total of 22 patients with reconstructed ACL were randomized into 1 of 2 groups: group 1 received 2 weeks of operant conditioning training on the reconstructed leg to improve their transcranial magnetic stimulation (TMS)-elicited MEPTORQUE responses (COND); group 2 received 2 weeks of TMS only (SHAM-COND). Quadriceps strength, voluntary activation, and corticospinal excitability on the reconstructed leg were evaluated before and after the 2-week intervention. Within-session changes in corticospinal excitability were also evaluated during the training sessions. RESULTS The COND group demonstrated a significantly higher within-session percent increase in MEPTORQUE during training compared with the SHAM-COND group, paralleled by a significant increase in corticospinal excitability after the 2-week intervention. In addition, quadriceps strength and voluntary activation improved on the reconstructed leg after the 2-week intervention, regardless of group. CONCLUSION Operant conditioning training can elicit improvements in corticospinal excitability after ACL reconstruction; however, improvements in quadriceps strength and voluntary activation seem not to be attributed solely to operant upconditioning training. CLINICAL RELEVANCE Operant conditioning is a promising approach to improve corticospinal excitability after ACL reconstruction. However, optimizing the delivery of operant conditioning protocols by potentially increasing the dosage of operant conditioning and intervening earlier after surgery may be needed to translate these changes to improvements in quadriceps function.
Collapse
Affiliation(s)
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Chandramouli Krishnan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, Michigan
- Department of Robotics, University of Michigan, Ann Arbor, Michigan
- Department of Physical Therapy, University of Michigan-Flint, Flint, Michigan
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Sherman DA, Rush J, Stock MS, D. Ingersoll C, E. Norte G. Neural drive and motor unit characteristics after anterior cruciate ligament reconstruction: implications for quadriceps weakness. PeerJ 2023; 11:e16261. [PMID: 37818333 PMCID: PMC10561646 DOI: 10.7717/peerj.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose The purpose of this investigation was to compare the quality of neural drive and recruited quadriceps motor units' (MU) action potential amplitude (MUAPAMP) and discharge rate (mean firing rate (MFR)) relative to recruitment threshold (RT) between individuals with anterior cruciate ligament reconstruction (ACLR) and controls. Methods Fourteen individuals with ACLR and 13 matched controls performed trapezoidal knee extensor contractions at 30%, 50%, 70%, and 100% of their maximal voluntary isometric contraction (MVIC). Decomposition electromyography (dEMG) and torque were recorded concurrently. The Hoffmann reflex (H-reflex) and central activation ratio (CAR) were acquired bilaterally to detail the proportion of MU pool available and volitionally activated. We examined MUAPAMP-RT and MFR-RT relationships with linear regression and extracted the regression line slope, y-intercept, and RT range for each contraction. Linear mixed effect modelling used to analyze the effect of group and limb on regression line slope and RT range. Results Individuals with ACLR demonstrated lower MVIC torque in the involved limb compared to uninvolved limb. There were no differences in H-reflex or CAR between groups or limbs. The ACLR involved limb demonstrated smaller mass-normalized RT range and slower MU firing rates at high contraction intensities (70% and 100% MVIC) compared to uninvolved and control limbs. The ACLR involved limb also demonstrated larger MU action potentials in the VM compared to the contralateral limb. These differences were largely attenuated with relative RT normalization. Conclusions These results suggest that persistent strength deficits following ACLR may be attributable to a diminished quadriceps motor neuron pool and inability to upregulate the firing rate of recruited MUs.
Collapse
Affiliation(s)
- David A. Sherman
- Live4 Physical Therapy and Wellness, Acton, Massachusetts, United States of America
- Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Justin Rush
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, United States of America
| | - Matt S. Stock
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, United States of America
| | - Christopher D. Ingersoll
- College of Health Professions and Sciences, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Grant E. Norte
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, United States of America
| |
Collapse
|
5
|
Prevc P, Misotic N, Stirn I, Tomazin K. Perceived Discomfort and Voluntary Activation of Quadriceps Muscle Assessed with Interpolated Paired or Triple Electrical Stimuli. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4799. [PMID: 36981708 PMCID: PMC10049235 DOI: 10.3390/ijerph20064799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Voluntary drive of the exercising muscle is usually assessed with the interpolated twitch technique (ITT), using paired supramaximal electrical stimuli. The aim of this study was to directly compare voluntary activation (VA) of the quadriceps muscle (QM) measured with the ITT, using paired and triple electrical stimuli during maximal voluntary isometric contraction (MVIC). In addition, perceived discomfort was compared with the use of paired and triple electrical stimuli during ITT. Ten healthy participants (23.6 ± 1.6 years) were included. They performed four MVIC, with paired or triple stimuli, in random order. MVIC torque, superimposed evoked torque, evoked torque at rest, VA, and visual analogue scale for pain (VAS-pain), were analysed. The amplitude of the triplet-evoked torque was higher than doublet-evoked torque, i.e., the signal-to-noise ratio increased. However, the differences between the estimation of VA with paired and triple stimuli were not significant (p = 0.136). Triple stimuli yielded higher VAS-pain scores than paired stimuli (p = 0.016). The limits of agreement for the VA using the Bland-Altman method were 7.66/0.629. It seems that the use of additional electrical stimuli is not a recommended solution for the evaluation of VA, because the advantages (i.e., better signal-to-noise ratio) do not outweigh the disadvantages (i.e., an increase in pain).
Collapse
|
6
|
Palmieri-Smith RM, Garcia SA, Rodriguez KM, Krishnan C. Electrically Evoked Torque at Rest is Strongly Related to Quadriceps Muscle Size in Individuals with Anterior Cruciate Ligament Reconstruction. MEASUREMENT IN PHYSICAL EDUCATION AND EXERCISE SCIENCE 2021; 26:199-206. [PMID: 36060895 PMCID: PMC9439261 DOI: 10.1080/1091367x.2021.2005602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrically evoked torque at rest (i.e., the torque produced from supramaximal stimul applied to a resting muscle) has been shown to be related to muscle size in healthy adults, but this relationship has not been evaluated in pathological populations where atrophy is present. This study aimed to evaluate the relationship between the electrically evoked torque at rest and vastus lateralis cross-sectional area (CSA) in individuals with anterior cruciate ligament (ACL) reconstruction. Eighteen individuals with ACL reconstruction participated. Quadriceps electrically evoked torque at rest was elicited bilaterally via sex-specific, standardized supramaximal triplet stimulations. Vastus lateralis CSA was measured at 50% of thigh length using ultrasound. Pearson's r and partial correlations were used to evaluate associations between outcomes. Evoked torque at rest was positively associated with vastus lateralis CSA in the ACL reconstructed limb (r=0.865, partial r=0.816, P<0.01), non-reconstructed limb (r=0.628, partial r=0.575, P<0.05), and side-to-side ratios (r=0.670, partial r=0.659, P<0.01). These results indicate that electrically evoked torque at rest may indirectly assess side-to-side differences in quadriceps muscle size after ACL reconstruction.
Collapse
Affiliation(s)
- Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan; Ann Arbor, MI
- Orthopedic Rehabilitation and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, MI
| | - Steven A Garcia
- Orthopedic Rehabilitation and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, MI
| | - Kazandra M. Rodriguez
- Orthopedic Rehabilitation and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, MI
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan; Ann Arbor, MI
- Neuromuscular and Rehabilitation Robotics Laboratory, University of Michigan; Ann Arbor, MI
- Robotics Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Rodriguez K, Garcia SA, Spino C, Lepley LK, Pang Y, Wojtys E, Bedi A, Angelini M, Ruffino B, Bolley T, Block C, Kellum J, Swartout A, Palmieri-Smith RM. Michigan Initiative for Anterior Cruciate Ligament Rehabilitation (MiACLR): A Protocol for a Randomized Clinical Trial. Phys Ther 2020; 100:2154-2164. [PMID: 32939539 PMCID: PMC7720639 DOI: 10.1093/ptj/pzaa169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Restoring quadriceps muscle strength following anterior cruciate ligament reconstruction (ACLR) may prevent the posttraumatic osteoarthritis that affects over 50% of knees with ACLR. However, a fundamental gap exists in our understanding of how to maximize muscle strength through rehabilitation. Neurological deficits and muscle atrophy are 2 of the leading mechanisms of muscle weakness after ACLR. High-intensity neuromuscular electrical stimulation (NMES) and eccentric exercise (ECC) have been shown to independently target these mechanisms. If delivered in succession, NMES and then ECC may be able to significantly improve strength recovery. The objectives of this study were to evaluate the ability of NMES combined with ECC to restore quadriceps strength and biomechanical symmetry and maintain cartilage health at 9 and 18 months after ACLR. METHODS This study is a randomized, double-blind, placebo-controlled, single-center clinical trial conducted at the University of Michigan. A total of 112 participants between the ages of 14 and 45 years and with an anterior cruciate ligament rupture will be included. Participants will be randomly assigned 1:1 to NMES combined with ECC or NMES placebo combined with ECC placebo. NMES or NMES placebo will be delivered 2 times per week for 8 weeks beginning 10 to 14 days postoperatively and will be directly followed by 8 weeks of ECC or ECC placebo delivered 2 times per week. The co-primary endpoints are change from baseline to 9 months and change from baseline to 18 months after ACLR in isokinetic quadriceps strength symmetry. Secondary outcome measures include isometric quadriceps strength, quadriceps activation, quadriceps muscle morphology (cross-sectional area), knee biomechanics (sagittal plane knee angles and moments), indexes of patient-reported function, and cartilage health (T1ρ and T2 relaxation time mapping on magnetic resonance imaging). IMPACT The findings from this study might identify an intervention capable of targeting the lingering quadriceps weakness after ACLR and in turn prevent deterioration in cartilage health after ACLR, thereby potentially improving function in this patient population.
Collapse
Affiliation(s)
- Kazandra Rodriguez
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan; and Orthopaedic Rehabilitation and Biomechanics Laboratory, University of Michigan
| | - Steven A Garcia
- School of Kinesiology, University of Michigan; and Orthopaedic Rehabilitation and Biomechanics Laboratory, University of Michigan
| | | | - Lindsey K Lepley
- School of Kinesiology, University of Michigan; and Orthopaedic Rehabilitation and Biomechanics Laboratory, University of Michigan
| | - Yuxi Pang
- Department of Radiology, Michigan Medicine, Ann Arbor, Michigan
| | - Edward Wojtys
- Michigan Medicine; and Department of Orthopaedic Surgery, Michigan Medicine
| | - Asheesh Bedi
- Michigan Medicine; and Department of Orthopaedic Surgery, Michigan Medicine
| | - Mike Angelini
- School of Kinesiology, University of Michigan; and Orthopaedic Rehabilitation and Biomechanics Laboratory, University of Michigan
| | | | | | | | | | | | | |
Collapse
|