1
|
Gomes SRBS, von Schantz M, Leocadio-Miguel M. Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach. Sleep Med 2023; 102:123-131. [PMID: 36641929 DOI: 10.1016/j.sleep.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. METHODS We used the National Health and Nutrition Examination Survey (NHANES) 2015-2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. RESULTS XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. CONCLUSIONS Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.
Collapse
Affiliation(s)
| | | | - Mario Leocadio-Miguel
- Department of Physiology and Behavior, Federal University of Rio Grande Do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
2
|
Casale CE, Goel N. Genetic Markers of Differential Vulnerability to Sleep Loss in Adults. Genes (Basel) 2021; 12:1317. [PMID: 34573301 PMCID: PMC8464868 DOI: 10.3390/genes12091317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss reports of genotype-dependent interindividual differences in phenotypic neurobehavioral responses to total sleep deprivation or sleep restriction. We highlight the importance of using the candidate gene approach to further elucidate differential resilience and vulnerability to sleep deprivation in humans, although we acknowledge that other omics techniques and genome-wide association studies can also offer insights into biomarkers of such vulnerability. Specifically, we discuss polymorphisms in adenosinergic genes (ADA and ADORA2A), core circadian clock genes (BHLHE41/DEC2 and PER3), genes related to cognitive development and functioning (BDNF and COMT), dopaminergic genes (DRD2 and DAT), and immune and clearance genes (AQP4, DQB1*0602, and TNFα) as potential genetic indicators of differential vulnerability to deficits induced by sleep loss. Additionally, we review the efficacy of several countermeasures for the neurobehavioral impairments induced by sleep loss, including banking sleep, recovery sleep, caffeine, and naps. The discovery of reliable, novel genetic markers of differential vulnerability to sleep loss has critical implications for future research involving predictors, countermeasures, and treatments in the field of sleep and circadian science.
Collapse
Affiliation(s)
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, 1645 W. Jackson Blvd., Suite 425, Chicago, IL 60612, USA;
| |
Collapse
|
3
|
Murillo-Rodríguez E, Machado S, Imperatori C, Yamamoto T, Budde H. Natural Cannabinoids as Templates for Sleep Disturbances Treatments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:133-141. [PMID: 33537941 DOI: 10.1007/978-3-030-61663-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sleep-wake cycle is a complex composition of specific physiological and behavioral characteristics. In addition, neuroanatomical, neurochemical and molecular systems exerts influences in the modulation of the sleep-wake cycle. Moreover, homeostatic and circadian mechanisms interact to control the waking or sleeping states. As many other behaviors, sleep also develops pathological features that include several signs and symptoms corresponding to medical conditions known as sleep disorders.In addition to the neurobiological mechanisms modulating sleep, external elements also influence the sleep-wake cycle, including the use of Cannabis sativa (C. sativa). In this regard, and over the last decades, the interest of studying the pharmacology of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of C. sativa, has been addressed. Moreover, in recent years, the focus of scientific interest has moved on to studying the second plant constituent with non-psychotropic pharmacological properties: Cannabidiol (CBD).The pharmacological and pharmaceutical interest of CBD has been focus of attention due to the accumulating body of evidence regarding the positive outcomes of using CBD for the treatment of several health issues, such as psychiatric and neurodegenerative disorders, epilepsy, etc. Since the most prominent sleep disruptions include excessive daytime sleepiness (EDS), current treatments include the use of drugs such as stimulants of antidepressants. Notwithstanding, side effects are commonly reported among the patients under prescription of these compounds. Thus, the search of novelty therapeutical approaches aimed to treat ESD may consider the use of cannabinoid-derived compounds, such as CBD. In this chapter, we will show experimental evidence regarding the potential role of CBD as a wake-inducing compound aimed to manage EDS.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, México. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Salgado de Oliveira University, Rio de Janeiro, Brazil.,Physical Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate Program-Salgado de Oliveira University (UNIVERSO), Rio de Janeiro, Brazil
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Graduate School of Technology, Industrial and Social Sciences, The University of Tokushima, Tokushima, Japan
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Jennum P, Ibsen R, Kjellberg J. Long-term health and socioeconomic consequences of childhood and adolescent-onset of narcolepsy. Sleep Med 2020; 67:23-27. [DOI: 10.1016/j.sleep.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 10/17/2019] [Indexed: 01/16/2023]
|
5
|
Murillo-Rodríguez E, Barciela Veras A, Barbosa Rocha N, Budde H, Machado S. An Overview of the Clinical Uses, Pharmacology, and Safety of Modafinil. ACS Chem Neurosci 2018; 9:151-158. [PMID: 29115823 DOI: 10.1021/acschemneuro.7b00374] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Modafinil (MOD) is a wakefulness-inducing compound prescribed for treatment of excessive daytime sleepiness as a consequence of sleep disturbances such as shift work sleep disorder, obstructive sleep apnea, restless leg syndrome, or narcolepsy. While providing effective results in patients with sleepiness, MOD also produces positive outcomes in the management of fatigue associated with different conditions including depression, cancer, or tiredness in military personnel. Although there is clear evidence of the stimulant effects of MOD, current data also show that administration of this drug apparently induces positive neurobiological effects, such as improvement in memory. However, serious concerns have been raised since some reports have suggested MOD dependence. Taken together, these findings highlight the need to characterize the changes induced by MOD which have been observed in several neurobiological functions. Moreover, further work should follow up on the likely long-term effects of this drug if used for treatment of drowsiness and tiredness. Here, we review and summarize recent findings of the medical uses of MOD in the management of sleepiness and fatigue associated with depression or cancer as well as exhaustion in military personnel. We also discuss the available literature related with the cognitive enhancing properties of this stimulant, as well as what is known and unknown about MOD addiction.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio
de Neurociencias Moleculares e Integrativas, Escuela de Medicina División
Ciencias de la Salud, Universidad Anáhuac Mayab, 97310 Mérida, Yucatán, México
- Grupo
de Investigación en Envejecimiento, División Ciencias
de la Salud, Universidad Anáhuac Mayab, 97310 Mérida, Yucatán, México
- Intercontinental Neuroscience Research Group, Yucatán, México
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Yucatán, México
- Grupo de Pesquisa Translacional em
Saúde Mental, Universidade Católica Dom Bosco, Campo
Grande, Mato Grosso del Sur 79117-900, Brazil
- Panic
and Respiration Laboratory, Institute of Psychiatry Federal, University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Yucatán, México
- Health School, Polytechnic Institute of Porto, 4200-465 Porto, Portugal
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Yucatán, México
- Faculty
of Human Sciences, Medical School Hamburg, 20457 Hamburg, Germany
- Physical
Activity, Physical Education, Health and Sport Research Centre (PAPESH),
Sports Science Department, School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland
- Lithuanian Sports University, Kaunas 44221, Lithuania
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Yucatán, México
- Panic
and Respiration Laboratory, Institute of Psychiatry Federal, University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Physical
Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate
Program-Salgado de Oliveira University, Salgado de Oliveira University, Niterói 24030-060, Brazil
| |
Collapse
|
6
|
|