1
|
Song J, Shao J, Yu S, Zhang H, Wang J. LncRNA MEG3 aggravates acute pulmonary embolism-induced pulmonary arterial hypertension by regulating miR-34a-3p/DUSP1 axis. Int J Biol Macromol 2024; 283:137755. [PMID: 39551320 DOI: 10.1016/j.ijbiomac.2024.137755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Acute pulmonary embolism (APE)-induced pulmonary artery hypertension (PAH) is a fatal disease. The miR-34-3p/DUSP1 has inhibitory effects on the thickening of the pulmonary arterial walls in APE rats and the proliferation of platelet-derived growth factor-BB (PDGF-BB)-induced human pulmonary arterial smooth muscle cells (hPASMCs). Herein, the lncRNAs regulating the miR-34a-3p/DUSP1 axis in APE and PAH are further explored in vitro and in vivo. MEG3 targeted miR-34a-3p. MEG3 overexpression potentiated the effects of PDGF-BB treatment on promoting the viability and proliferation of hPASMCs, as well as the mPAP level in APE rats. Also, overexpressed MEG3 strengthened PDGF-BB-induced upregulation of MEG3, NOR-1, PCNA and DUSP1, as well as downregulation of miR-34a-3p in hPASMCs and APE rats. However, shMEG3 generated opposite effects. MiR-34a-3p mimic reversed the effect of MEG3 overexpression, and DUSP1 overexpression neutralized the effect of MEG3 downregulation on PDGF-BB-induced hPASMCs and APE rats.MEG3 aggravates APE-induced PAH by regulating miR-34a-3p/DUSP1 axis, holding a great promise as a novel biomarker for PAH treatment.
Collapse
Affiliation(s)
- Jianfeng Song
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China
| | - Jinyan Shao
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China
| | - Shuili Yu
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China
| | - Heng Zhang
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China.
| | - Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China.
| |
Collapse
|
2
|
Wei X, Zou Y, Dong S, Chen Y, Li G, Wang B. Recombinant hirudin attenuates pulmonary hypertension and thrombosis in acute pulmonary embolism rat model. PeerJ 2024; 12:e17039. [PMID: 38590700 PMCID: PMC11000639 DOI: 10.7717/peerj.17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Background Acute pulmonary embolism (APE) is classified as a subset of diseases that are characterized by lung obstruction due to various types of emboli. Current clinical APE treatment using anticoagulants is frequently accompanied by high risk of bleeding complications. Recombinant hirudin (R-hirudin) has been found to have antithrombotic properties. However, the specific impact of R-hirudin on APE remains unknown. Methods Sprague-Dawley (SD) rats were randomly assigned to five groups, with thrombi injections to establish APE models. Control and APE group rats were subcutaneously injected with equal amounts of dimethyl sulfoxide (DMSO). The APE+R-hirudin low-dose, middle-dose, and high-dose groups received subcutaneous injections of hirudin at doses of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg, respectively. Each group was subdivided into time points of 2 h, 6 h, 1 d, and 4 d, with five animals per point. Subsequently, all rats were euthanized, and serum and lung tissues were collected. Following the assessment of right ventricular pressure (RVP) and mean pulmonary artery pressure (mPAP), blood gas analysis, enzyme-linked immunosorbnent assay (ELISA), pulmonary artery vascular testing, hematoxylin-eosin (HE) staining, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, immunohistochemistry, and Western blot experiments were conducted. Results R-hirudin treatment caused a significant reduction of mPAP, RVP, and Malondialdehyde (MDA) content, as well as H2O2 and myeloperoxidase (MPO) activity, while increasing pressure of oxygen (PaO2) and Superoxide Dismutase (SOD) activity. R-hirudin also decreased wall area ratio and wall thickness to diameter ratio in APE rat pulmonary arteries. Serum levels of endothelin-1 (ET-1) and thromboxaneB2 (TXB2) decreased, while prostaglandin (6-K-PGF1α) and NO levels increased. Moreover, R-hirudin ameliorated histopathological injuries and reduced apoptotic cells and Matrix metalloproteinase-9 (MMP9), vascular cell adhesion molecule-1 (VCAM-1), p-Extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P65/P65 expression in lung tissues. Conclusion R-hirudin attenuated pulmonary hypertension and thrombosis in APE rats, suggesting its potential as a novel treatment strategy for APE.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Yanfen Zou
- Departments of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shangdong Province, China
| | - Shunli Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Yi Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Guoping Li
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Qu X, Huang D, Zhou X, Ruan W. SCUBE1 promotes pulmonary artery smooth muscle cell proliferation and migration in acute pulmonary embolism by modulating BMP7. PeerJ 2024; 12:e16719. [PMID: 38259670 PMCID: PMC10802153 DOI: 10.7717/peerj.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives After an episode of acute pulmonary embolism (APE), activated platelets have the ability to release various bioactive factors that can stimulate both proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). SCUBE1 has been previously reported to engage in platelet-platelet interactions, potentially contributing to the activation of platelets in early onset thrombi. The purpose of this study was to examine the alterations in SCUBE1 expression in PASMCs after APE, as well as understand the mechanism behind these changes. Methods The platelet-rich plasma samples of both APE patients and healthy individuals were collected. A hyperproliferative model of PASMCs was established by using platelet-derived growth factor (PDGF) as a stimulator and various assays were used to investigate how SCUBE1-mediated BMP7 can regulate PDGF-induced PASMC proliferation and migration. Results Elevated level of SCUBE1 were observed in platelet-rich plasma from patients with APE and in PASMCs induced by PDGF. SCUBE1 interference ameliorated PDGF-driven cell proliferation and migration, and also downregulated PCNA expression. Additionally, mechanistic studies demonstrated that SCUBE1 could directly bind to bone morphogenetic protein 7 (BMP7) and enhance BMP7 expression, which completely abolished the impact of SCUBE1 silencing on proliferation and migration ability of PASMCs after PDGF treatment. Conclusion In the PDGF-induced proliferation of PASMCs, the expression of SCUBE1 and BMP7 was upregulated. Silencing of SCUBE1 impeded PDGF-induced proliferation and migration of PASMCs by restraining BMP7.
Collapse
Affiliation(s)
- Xiaoya Qu
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| | - Dongmei Huang
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| | - Xiaomin Zhou
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| | - Wenwen Ruan
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| |
Collapse
|
4
|
Karpov AA, Mihailova AM, Cherepanov DE, Chefu SG, Shilenko LA, Vaulina DD, Butskikh MG, Chervaev KA, Sidorova EE, Ivkin DY, Galagudza MM. The Use of Microencapsulated Autologous Thrombi for Modelling Chronic Thromboembolic Pulmonary Hypertension in Rats. Bull Exp Biol Med 2023; 175:616-619. [PMID: 37853268 DOI: 10.1007/s10517-023-05912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 10/20/2023]
Abstract
Here we developed a model of chronic thromboembolic pulmonary hypertension (CTEPH) using repeated intravenous administration of microencapsulated thrombi with a controlled rate of biodegradation. Autologous thrombi encapsulated in alginate microspheres with a diameter of 190±48 μm were intravenously injected to rats 8 times every 4 days. In the comparison group, nonmodified thrombi were injected. After 6 weeks, a significant increase in systolic pressure in the right ventricle, a decrease in exercise tolerance, and an increase in the index of vascular wall hypertrophy were revealed in the group receiving injections of microencapsulated thrombi in comparison with the group receiving nonmodified thrombi and healthy animals. Thus, the developed representative CTEPH model can be used to test promising pharmacological substances.
Collapse
Affiliation(s)
- A A Karpov
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- St. Petersburg State Chemical and Pharmaceutical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - A M Mihailova
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D E Cherepanov
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - S G Chefu
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - L A Shilenko
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D D Vaulina
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
| | - M G Butskikh
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Kh A Chervaev
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E E Sidorova
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D Yu Ivkin
- St. Petersburg State Chemical and Pharmaceutical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M M Galagudza
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
5
|
Sang L, Guo X, Zhao Y, Shi J, Niu Z, Wu Z, Hou S, Fan H, Lv Q. Protective Effect of Nebulized Heparin in the Animal Models of Smoke Inhalation Injury: A Meta-analysis and Systematic Review of Experimental Studies. J Burn Care Res 2023; 44:42-52. [PMID: 36269755 DOI: 10.1093/jbcr/irac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 01/14/2023]
Abstract
The pathophysiological mechanism of abnormal coagulation can result from smoke inhalation injury (SII). Heparin nebulization is a common treatment for lung disorders. This study aimed to use meta-analysis in animal models to examine the effectiveness of atomized heparin on SII. For our online searches, we used the Cochrane Central Register of Controlled Trials, PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese BioMedical Literature Database, and Wanfang Database up to January 2022. Data for SII were retrieved and compared to control animals. The studies' findings were determined by combining standardized mean difference (SMD) analysis with 95% confidence intervals (CIs). The findings showed that as compared to the control group, the heparin-treated group had a lower death rate (relative risk 0.42; 95% CI 0.22, 0.80; p < .05). The meta-analysis demonstrated favorable changes in lung physiology, including PaO2/FiO2 (SMD 1.04; 95% CI 0.65, 1.44; p < .001), lung wet-to-dry weight ratio (SMD -1.83; 95% CI -2.47, -1.18; p < .001), and pulmonary shunt Qs/Qt (SMD -0.69; 95% CI -1.29, -0.08; p < .05) after heparin nebulization for lung injury. The present data indicated that pulmonary artery mean pressure in the heparin therapy group was significantly lowered after 24 and 48 hours of therapy, suggesting that the cardiovascular system could recover following heparin treatment. As a result, heparin nebulization appeared to be more effective against SII and improved cardiopulmonary function compared to the control group. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Sang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yuchen Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhifang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhenlong Wu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
6
|
Karpov AA, Vaulina DD, Smirnov SS, Moiseeva OM, Galagudza MM. Rodent models of pulmonary embolism and chronic thromboembolic pulmonary hypertension. Heliyon 2022; 8:e09014. [PMID: 35295664 PMCID: PMC8919224 DOI: 10.1016/j.heliyon.2022.e09014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Pulmonary embolism (PE) is the third most prevalent cardiovascular disease. It is associated with high in-hospital mortality and the development of acute and chronic complications. New approaches aimed at improving the prognosis of patients with PE are largely dependent on reliable animal models. Mice, rats, hamsters, and rabbits, are currently most commonly used for PE modeling because of their ethical acceptability and economic feasibility. This article provides an overview of the main approaches to PE modeling, and the advantages and disadvantages of each method. Special attention is paid to experimental endpoints, including morphological, functional, and molecular endpoints. All approaches to PE modeling can be broadly divided into three main groups: 1) induction of thromboembolism, either by thrombus formation in vivo or by injection of in vitro prepared blood clots; 2) introduction of particles of non-thrombotic origin; and 3) surgical procedures. The choice of a specific model and animal species is determined based on the objectives of the study. Rodent models of chronic thromboembolic pulmonary hypertension (CTEPH), which is the most devastating complication of PE, are also described. CTEPH models are especially challenging because of insufficient knowledge about the pathogenesis and high fibrinolytic activity of rodent plasma. The CTEPH model should demonstrate a persistent increase in pulmonary artery pressure and stable reduction of the vascular bed due to recurrent embolism. Based on the analysis of available evidence, one might conclude that currently, there is no single optimal method for modeling PE and CTEPH.
Collapse
|
7
|
Li Y, Shao J, Song J, Yu S, Wang J, Sun K. MiR-34a-3p suppresses pulmonary vascular proliferation in acute pulmonary embolism rat by targeting DUSP1. Biosci Rep 2022; 42:BSR20210116. [PMID: 34778900 PMCID: PMC8703022 DOI: 10.1042/bsr20210116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Acute pulmonary embolism (APE) is a prevalent reason of cardiovascular morbidity and mortality. Recent studies have underscored the positive effects of microRNAs (miRNAs) on many diseases. The present study aimed to identify the critical miRNA with differential expressions and explore its role in APE. METHODS The critical miRNA with its target gene was screened by bioinformatics analysis. Their binding relationship was analyzed by TargetScan, Dual-luciferase reporter and RNA pull-down assays. A rat model of APE was established by self-blood coagulum. Human pulmonary artery smooth muscle cells (PASMCs) were exposed to platelet-derived growth factor (PDGF-BB) for excessive proliferation, and transfected with miR-34a-3p mimic. Mean pulmonary arterial pressure (mPAP) of rat was measured, and the pulmonary tissues were used for the pathological observation by Hematoxylin-Eosin (H&E) staining. Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) and EdU assays. The expressions of miR-34a-3p with its target genes (including dual-specificity phosphatase-1 (DUSP1)), neuron-derived orphan receptor-1 (NOR-1) and proliferating cell nuclear antigen (PCNA) were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or/and Western blot. RESULTS MiR-34a-3p expression was down-regulated in APE patients, which attenuated the increment of mPAP and thickening of the pulmonary arterial walls in APE rats, accompanied with regulation of NOR-1 and PCNA levels. MiR-34a-3p suppressed DUSP1 expression by directly binding to its 3'-untranslated region (UTR), and attenuated cell viability, proliferation, and the expressions of NOR-1 and PCNA in PDGF-BB-induced PASMCs by inhibiting DUSP1 expression. CONCLUSION Up-regulated miR-34a-3p negatively regulates DUSP1 expression to inhibit PASMC proliferation, which, thus, may act on APE treatment by negatively regulating pulmonary vascular proliferation.
Collapse
MESH Headings
- Animals
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Dual Specificity Phosphatase 1/genetics
- Dual Specificity Phosphatase 1/metabolism
- Gene Expression Regulation, Enzymologic
- Male
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Pulmonary Embolism/enzymology
- Pulmonary Embolism/genetics
- Pulmonary Embolism/pathology
- Rats, Sprague-Dawley
- Signal Transduction
- Vascular Remodeling
- Rats
Collapse
Affiliation(s)
- Yang Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Jinyan Shao
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Jianfeng Song
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Shuili Yu
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiqin Wang
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Keyu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhang Y, Tang S, Yang W, Du F. let-7b-5p suppresses the proliferation and migration of pulmonary artery smooth muscle cells via down-regulating IGF1. Clinics (Sao Paulo) 2022; 77:100051. [PMID: 35636162 PMCID: PMC9156868 DOI: 10.1016/j.clinsp.2022.100051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Some previous studies indicated that the excessive proliferation and migration of Pulmonary Artery Smooth Muscle Cells (PASMCs) could be observed in pulmonary artery intima after Pulmonary Embolism (PE) occurred. In addition, recent studies identified some miRNAs that are differentially expressed in the blood of PE patients, which might be used as a diagnostic biomarker for PE, including let-7a-5p, let-7b-5p, and miR-150-5p. Hence, the authors sought to explore the effects of let-7b-5p in PASMC proliferation and migration and the corresponding regulatory mechanism. METHODS Platelet-Derived Growth Factor (PDGF) was utilized to induce the hyper-proliferation model in PASMCs. The mRNA and protein expression levels were detected by RT-qPCR and western blot, respectively. The proliferation of PASMCs was evaluated by the detection of PCNA expression, as well as CCK-8 and Edu assays. Wound healing and Transwell assays were exploited to assess the migration ability of PASMCs. The targets of let-7b-5p were predicted based on two bioinformatics online tools. Dual-luciferase and Ago2 pull-down assays were applied to confirm the interaction between let-7b-5p and IGF1. RESULTS 40 ng/mL PDGF was selected as the optimal concentration to induce PASMCs. let-7b-5p mimics suppressed the proliferation and migration of PDGF-induced PASMCs, while let-7b-5p inhibitor led to the opposite result. In further mechanism exploration, IGF1 was predicted and confirmed as the direct target gene of let-7b-5p. The promotion role of IGF1 overexpression on the proliferation and migration of PDGF-induced PASMCs was dramatically countered by let-7b-5p mimics. CONCLUSION let-7b-5p prohibits the proliferation and migration of PDGF-induced PASMCs by modulating IGF1.
Collapse
Affiliation(s)
- Yadi Zhang
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Sihui Tang
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Wanchun Yang
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Fangbing Du
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| |
Collapse
|
9
|
Liang D, Wen Z, Han W, Li W, Pan L, Zhang R. Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis. Mol Cell Biochem 2021; 476:2823-2835. [PMID: 33730297 DOI: 10.1007/s11010-021-04127-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
This study was intended to investigate the effect of Curcumin on acute pulmonary embolism (APE) via microRNA-21 (miR-21)/PTEN/NF-κB axis. APE model was induced on rats and administrated with Curcumin. Western blot analysis and RT-qPCR manifested the downregulation of Sp1, miR-21 and NF-κB, but the upregulation of PTEN in Curcumin-treated APE rats. Blood gas analysis, ELISA, and weighing of wet weight/dry weight (W/D) ratio indicated that Curcumin diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. Further mechanical analysis was conducted by dual-luciferase reporter assays and ChIP assay, which showed that Sp1 increased miR-21 expression by binding to the miR-21 promoter, and that PTEN was targeted by miR-21. The APE rats were injected with adenovirus to evaluate the effect of Sp1, miR-21, or PTEN on lung injury and inflammation. It was observed that downregulation of miR-21 or Sp1, or upregulation of PTEN diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. In summary, Curcumin decreased miR-21 expression by downregulating Sp1 to upregulate PTEN and to impair the NF-κB signaling pathway, thus suppressing lung injury and inflammation in APE rats.
Collapse
Affiliation(s)
- Dean Liang
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Zhiguo Wen
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wanli Han
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wenming Li
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Ruipeng Zhang
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Chen H, Ma Q, Zhang J, Meng Y, Pan L, Tian H. miR‑106b‑5p modulates acute pulmonary embolism via NOR1 in pulmonary artery smooth muscle cells. Int J Mol Med 2020; 45:1525-1533. [PMID: 32323756 PMCID: PMC7138273 DOI: 10.3892/ijmm.2020.4532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/17/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pulmonary embolism (APE) is a common cause of acute cardiovascular failure and has a high morbidity and mortality rate. Inhibiting the excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) is a potential treatment strategy following an APE. Various microRNAs (miRNAs/miRs) have been shown to regulate cell proliferation, apoptosis and other physiological processes. However, the specific mechanisms underlying the action of multiple miRNAs are still not understood in APE. In the present study, the role of miR‑106b‑5p on APE was demonstrated in platelet‑derived growth factor (PDGF)‑induced PASMCs in vitro and in an APE‑mouse model in vivo. The results showed that miR‑106b‑5p expression was downregulated in PDGF‑induced PASMCs and APE mice, and NOR1 levels were upregulated. Proliferating cell nuclear antigen (PCNA) expression levels in cells and proliferation of PASMCs proliferation and migration were reduced following treatment with miR‑106b‑5p agomiR, and increased following treatment with miR‑106b‑5p antagomiR. miR‑106b‑5p targeted the 3' untranslated region of NOR‑1 mRNA and reduced NOR1 expression. NOR1 overexpression reversed the effects of miR‑106‑5p on PDGF‑induced PASMCs. The functional roles of miR‑106b‑5p in PDGF‑induced PASMCs and an APE mouse‑model, and the underlying molecular mechanisms were evaluated. AgomiR‑106b‑5p improved APE‑induced mortality and pulmonary vascular proliferation in mice. These data suggest that miR‑106‑5p is a novel regulator of proliferation of PASMCs and of pulmonary vascular remodeling through PDGF‑induced PASMCs in an APE mouse model via targeting NOR1. These results expand the understanding of the pathogenesis underlying APE and highlight potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heming Chen
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
- Department of Endocrinology, Ankang Central Hospital, Ankang, Shaanxi 725000, P.R. China
| | - Qiang Ma
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Junbo Zhang
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Yan Meng
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Hongyan Tian
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| |
Collapse
|
11
|
Wu ZY, Li H, Tang YJ. Effect of simvastatin on the SIRT2/NF-κB pathway in rats with acute pulmonary embolism. PHARMACEUTICAL BIOLOGY 2018; 56:511-518. [PMID: 31070532 PMCID: PMC6282435 DOI: 10.1080/13880209.2018.1508239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Statins have been widely used in acute pulmonary embolism (APE), while simvastatin has been well-established for the prevention of pulmonary hypertension, which was supposed to be an attractive recommendation for APE treatment. OBJECTIVE The current article studies the effect of simvastatin on the SIRT2/NF-κB pathway in rats with APE. MATERIALS AND METHODS Sprague-Dawley rats were divided into four groups (n = 24 per group): control group, rats were treated with saline once daily for 14 days before administration of saline (sham group) or a suspension of autologous emboli (APE group), or rats were treated with simvastatin (10 mg/kg) for 14 days before administration of autologous emboli (APE + simvastatin) group. The RVSP, mPAP and the arterial blood gas was analyzed. Besides, plasma inflammatory cytokines and MMPs levels, as well as the expression of SIRT2/NF-κB pathway were determined. RESULTS Compared with the control and sham groups, the levels of mPAP (31.06 ± 3.47 mmHg), RVSP (35.12 ± 6.02 mmHg), A-aDO2 (33.14 ± 6.16 mmHg) and MMP-9 (6.89 ± 0.84 ng/mL) activity were significantly elevated, but PaO2 (66.87 ± 7.85 mmHg) was highly decreased in rats from APE group at 24 h after APE. Meanwhile, the inflammatory changes were aggravated by the enhanced levels of TNF-α (138.85 ± 22.69 pg/mL), IL-1β (128.47 ± 22.14 pg/mL), IL-6 (103.16 ± 13.58 pg/mL) and IL-8 (179.28 ± 25.79 pg/mL), as well as increased NF-κB (5.29 ± 0.47 fold), but reduced SIRT2 (59 ± 6% reduction), and eNOS (61 ± 5% reduction) mRNA in APE rats. APE rats treated with simvastatin led to a significant opposite trend of the above indexes. CONCLUSIONS Simvastatin protects against APE-induced pulmonary artery pressure, hypoxemia and inflammatory changes probably due to the regulation of SIRT2/NF-κB signalling pathway, which suggest that simvastatin may have promising protective effects in patients with APE.
Collapse
Affiliation(s)
- Zhi-Yao Wu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Jun Tang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|