1
|
Raafat AI, Ali AEH, Hassan AA. Radiation development and hemostatic performance of innovative hydroxypropyl methyl cellulose-based sponge dressings for controlling severe hemorrhagic wounds. Int J Biol Macromol 2025; 292:139132. [PMID: 39732259 DOI: 10.1016/j.ijbiomac.2024.139132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing. A series of superabsorbent hemostatic dressings composed of (hydroxypropyl methylcellulose/agar-agar/carbopol) (HPMC/AA/Cp) assisted with Salvadora persica (Miswak) (Mis), Achillea millefolium L. (Yarrow) (Yaro), (shepherd's purse) (Sheph), and Equisetum arvense L. (horsetail) (HoTa) extracts were prepared. The freeze-drying technique was used to obtain spongious (HPMC/AA/Cp)-Mis, (HPMC/AA/Cp)-Yaro, (HPMC/AA/Cp)-Sheph, and (HPMC/AA/Cp)-Hota, respectively. The developed dressings' swelling characteristics and the In-vitro cytocompatibility, hemostatic efficacy, and bactericidal potential were evaluated. The In-vivo hemostatic potential was assessed using a hemorrhaging liver rat model. Transferrin and calcium levels were measured to document their impact on the hemostasis process.
Collapse
Affiliation(s)
- Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
2
|
Wróblewski M, Wróblewska J, Nuszkiewicz J, Mila-Kierzenkowska C, Woźniak A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules 2024; 29:5310. [PMID: 39598700 PMCID: PMC11596956 DOI: 10.3390/molecules29225310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body's physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes scabiei var. hominis, affects millions globally, particularly in developing regions. The infestation leads to severe itching and skin rashes, triggered by allergic reactions to the mites, their eggs, and feces. Conventional scabies treatments typically involve the use of scabicidal agents, which, although effective, are often associated with adverse side effects and the increasing threat of resistance. In light of these limitations, there is growing interest in the use of medicinal plants as alternative therapeutic options. Medicinal plants, rich in bioactive compounds with antioxidant properties, offer a promising, safer, and potentially more effective approach to treatment. This review explores the role of oxidative stress in scabies pathogenesis and highlights how medicinal plants can mitigate this by reducing inflammation and oxidative damage, thereby alleviating symptoms and improving patient outcomes. Through their natural antioxidant potential, these plants may serve as viable alternatives or complementary therapies in the management of scabies, especially in cases where resistance to conventional treatments is emerging.
Collapse
Affiliation(s)
| | | | | | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
3
|
Alwadi MA, AlJameel AH, Alshammari FR, Chavarria EA, Aboul-Enein BH. A Social Media Content Analysis of Dental Health Information Involving the Use of Miswak (Salvadora persica) Chewing Stick on YouTube™. Cureus 2024; 16:e64743. [PMID: 39156305 PMCID: PMC11328981 DOI: 10.7759/cureus.64743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background The widespread availability of Internet access and the rising popularity of social media platforms have facilitated the dissemination of health-related information, including dental health practices. However, assessing the quality and effectiveness of such information remains a challenge, particularly concerning traditional practices such as Miswak (Salvadora persica) usage. This study aims to assess the description, use, and effectiveness of the Miswak (Salvadora persica) chewing stick posted as video clips on YouTube™ and provide considerations for future interventions. Methodology YouTube videos were searched using the terms "Miswak," "Siwak," "Salvadora persica," and "Chewing stick." Each video's descriptive features, i.e., title, links, country of origin, upload date, running time, views, comments, likes, and dislikes, were recorded. Content quality was assessed using the DISCERN tool, which rates the reliability, dependability, and trustworthiness of online sources across 16 items. Scores were aggregated for analysis. The statistical analysis examined video features and associations between the speaker, video type, source, and quality, with significance set at a p-value <0.05 using SPSS Statistics Version 20 (IBM Corp., Armonk, NY, USA). Results A total of 45 videos were included in the study, with the majority (62%) created by the "other professionals" category. Almost three-quarters (73.3%) of the videos were educational. The quality of the video clips was correlated with the speaker source and category of "other," revealing that high-quality information was considered such when the source was other than a dentist. Further, we found that a video's source did not elicit differences in the opinion of the video's quality. Conclusions This social media analysis provides considerations and implications for future research on the potential use of YouTube as a platform for Miswak educational interventions.
Collapse
Affiliation(s)
- Maram A Alwadi
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, SAU
| | - AlBandary H AlJameel
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, SAU
| | - Falah R Alshammari
- Department of Dental Public Health and Community Dentistry, College of Dentistry, Hail University, Hail, SAU
| | - Enmanuel A Chavarria
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Basil H Aboul-Enein
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, GBR
| |
Collapse
|
4
|
Abu-Nawareg MM, Abouelseoud HK, Zidan AZ. Effect of Salvadora persica on resin-dentin bond stability. BMC Oral Health 2024; 24:505. [PMID: 38684974 PMCID: PMC11057114 DOI: 10.1186/s12903-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The stability of resin-dentin interfaces is still highly questionable. The aim of this study was to evaluate the effect of Salvadora persica on resin-dentin bond durability. MATERIALS AND METHODS Extracted human third molars were used to provide mid-coronal dentin, which was treated with 20% Salvadora persica extract for 1 min after acid-etching. Microtensile bond strength and interfacial nanoleakage were evaluated after 24 h and 6 months. A three-point flexure test was used to measure the stiffness of completely demineralized dentin sticks before and after treatment with Salvadora persica extract. The hydroxyproline release test was also used to measure collagen degradation by endogenous dentin proteases. Statistical analysis was performed using two-way ANOVA followed by post hoc Bonferroni test and unpaired t-test. P-values < 0.05 were considered statistically significant. RESULTS The use of Salvadora persica as an additional primer with etch-and-rinse adhesive did not affect the immediate bond strengths and nanoleakage (p > 0.05). After 6 months, the bond strength of the control group decreased (p = 0.007), and nanoleakage increased (p = 0.006), while Salvadora persica group showed no significant difference in bond strength and nanoleakage compared to their 24 h groups (p > 0.05). Salvadora persica increased dentin stiffness and decreased collagen degradation (p < 0.001) compared to their controls. CONCLUSION Salvadora persica extract pretreatment of acid-etched dentin preserved resin-dentin bonded interface for 6 months. CLINICAL SIGNIFICANCE Durability of resin-dentin bonded interfaces is still highly questionable. Endogenous dentinal matrix metalloproteinases play an important role in degradation of dentinal collagen within such interfaces. Salvadora persica may preserve resin-dentin interfaces for longer periods of time contributing to greater clinical success and longevity of resin composite restorations.
Collapse
Affiliation(s)
- Manar M Abu-Nawareg
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, P.O. Box 80209, Jeddah, 21589, Saudi Arabia.
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.
| | - Hanan K Abouelseoud
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, P.O. Box 80209, Jeddah, 21589, Saudi Arabia
- Operative Dentistry Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Ahmed Z Zidan
- Restorative Dentistry Department, Faculty of Dentistry, Umm Al-Qura University, Mekkah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
5
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
6
|
Sarani M, Hamidian K, Barani M, Adeli‐Sardou M, Khonakdar HA. α-Fe 2 O 3 @Ag and Fe 3 O 4 @Ag Core-Shell Nanoparticles: Green Synthesis, Magnetic Properties and Cytotoxic Performance. ChemistryOpen 2023; 12:e202200250. [PMID: 37260410 PMCID: PMC10235882 DOI: 10.1002/open.202200250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/22/2023] [Indexed: 06/02/2023] Open
Abstract
This work provides the synthetic route for the arrangement of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell nanoparticles (NPs) with cytotoxic capabilities. The production of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell NPs was facilitated utilizing S. persica bark extracts. The results of Powder X-ray Diffraction (PXRD), Ultraviolet-visible (UV-Vis) spectroscopy, Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray (EDX) analysis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) supported the green synthesis and characterization of Fe3 O4 @Ag and α-Fe2 O3 @Ag NPs. The particle size was measured by the TEM analysis to be about 30 and 50 nm, respectively; while the results of FESEM showed that α-Fe2 O3 @Ag and Fe3 O4 @Ag particles contained multifaceted particles with a size of 50-60 nm and 20-25 nm, respectively. The outcomes of VSM were indicative of a saturation magnetization of 37 and 0.18 emu/g at room temperature, respectively. The potential cytotoxicity of the synthesized core-shell nanoparticles towards breast cancer (MCF-7) and human umbilical vein endothelial (HUVEC) cells was evaluated by an MTT assay. α-Fe2 O3 @Ag NPs were able to destroy 100 % of MCF-7 cell at doses above 80 μg/mL, and it was confirmed that Fe3 O4 @Ag NPs at a volume of 160 μg/mL can destroy 90 % of MCF-7 cells. Thus, the applicability of the prepared nanoparticles of these nanoparticles in biological and medical fields has been demonstrated.
Collapse
Affiliation(s)
- Mina Sarani
- Zabol Medicinal Plants Research CenterZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Khadijeh Hamidian
- Department of PharmaceuticsFaculty of PharmacyZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
| | - Mahboubeh Adeli‐Sardou
- Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
- Department of BiotechnologyInstitute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyThe end of Haft Bagh Alavi HighwayKermanIran
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteKaraj HighwayTehranIran
| |
Collapse
|
7
|
Evaluation of Major Constituents of Medicinally Important Plants for Anti-Inflammatory, Antidiabetic and AGEs Inhibiting Properties: In Vitro and Simulatory Evidence. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196715. [PMID: 36235251 PMCID: PMC9571302 DOI: 10.3390/molecules27196715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Diabetes mellitus (DM) is a global health concern that is associated with several micro- and macrovascular complications. We evaluated several important medicinal plant constituents, including polyphenols and flavonoids, for α-glucosidase inhibition, AGEs’ inhibitory activities using oxidative and no-oxidative assays, the inhibition of protein cross link formation, 15-lipoxydenase inhibition and molecular docking. The molecular docking studies showed high binding energies of flavonoids for transcriptional regulars 1IK3, 3TOP and 4F5S. In the α-glucosidase inhibition assay, a significant inhibition was noted for quercitrin (IC50 7.6 µg/mL) and gallic acid (IC50 8.2 µg/mL). In the AGEs inhibition assays, quercetin showed significant results in both non-oxidative and (IC50 0.04 mg/mL) and oxidative assays (IC50 0.051 mg/mL). Furthermore, quercitrin showed inhibitory activity in the non-oxidative (IC50 0.05 mg/mL) and oxidative assays (IC50 0.34 mg/mL). A significant inhibition of protein cross link formation was observed by SDS-PAGE analysis. Quercitrin (65%) and quercetin (62%) showed significant inhibition of 15-lipoxygenase. It was thus concluded that flavonoids and other polyphenols present in plant extracts can be effective in management of diabetes and allied co-morbidities.
Collapse
|
8
|
Khanam A, Ahmad A, Iftikhar N, Ali Q, Fatima T, Alswailmi FK, Hussain AI, Alnasser SMA, Akhtar J. Variation in Phenolic Profile, Antioxidant, and Anti-Inflammatory Activities of Salvadora oleoides Decene. and Salvadora persica L. Fruits and Aerial Part Extracts. Life (Basel) 2022; 12:life12091446. [PMID: 36143482 PMCID: PMC9504548 DOI: 10.3390/life12091446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: The objective of this study was to investigate the potential of Salvadora oleoides (S. oleoides) and Salvadora persica (S. persica) polyphenols as antioxidant and anti-inflammatory agents. (2) Methods: Aerial parts and fruits of S. oleoides and S. persica were collected from the periphery of District Bhakkar, Punjab, Pakistan. Methanol extracts were prepared using the Soxhlet extraction technique. Extract yield varied from 8.15 to 19.6 g/100 g dry plant material. RP-HPLC revealed the detection of thirteen phenolic aids and five flavonoids. Gallic acid, hydroxy benzoic acid, chlorogenic acid, and cinamic acid were the major phenolic acids, whereas catechin, rutin, and myricetin were the flavonoids detected. (3) Results: Maximum total phenolic contents (TPCs) (22.2 mg/g of dry plant material) and total flavonoid contents (TFCs) (6.17 mg/g of dry plant material) were found in the fruit extract of S. persica, and the minimum TPC (11.9 mg/g) and TFC (1.72 mg/g) were found in the aerial part of S. oleoides. The fruit extract of S. persica showed the highest DPPH radical scavenging activity. In vivo anti-inflammatory activity of all the extracts was performed on albumin-induced rat paw edema that was comparable with the standard indomethacin; S. persica fruit extract showed remarkable anti-inflammatory activity. Analgesic activity of aerial part and fruit extracts of S. oleoides and S. persica was investigated using a mouse model, and the results showed that maximum possible analgesia of fruit extracts of S. persica was 53.44%, which is better than the PC group (52.98%). (4) Conclusions: The variations in the antioxidant, anti-inflammatory, and analgesic activities of methanolic extracts of S. oleoides and S. persica were found to be significant, and they have therapeutic potential as antioxidant, analgesic, and anti-inflammatory agents.
Collapse
Affiliation(s)
- Arifa Khanam
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Neelam Iftikhar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Qasim Ali
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tabinda Fatima
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Farhan Khashim Alswailmi
- Department of Pharmacy practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Abdullah Ijaz Hussain
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (A.I.H.); (S.M.A.A.)
| | - Sulaiman Mohammed Abdullah Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (A.I.H.); (S.M.A.A.)
| | - Jamshaid Akhtar
- Department of Internal Medicine, Allama Lqbal Medical College, Lahore 54700, Pakistan
| |
Collapse
|
9
|
Salvadora persica’s Biological Properties and Applications in Different Dental Specialties: A Narrative Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8667687. [PMID: 35652125 PMCID: PMC9148855 DOI: 10.1155/2022/8667687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Salvadora persica is a tree that belongs to the salvadorecea family. It is also known as Miswak, which is a popular natural toothbrush that was used centuries ago in oral hygiene by Muslims in all parts of the world, especially in the Middle East. Numerous researchers highlighted the biological activity of this plant in medicine, dentistry, and pharmacology. The purpose of this article is to narratively review the biological properties of Salvadora persica. In addition, it expresses variant applications of this herb in different dental specialties. Materials and Methods. The search of the literature was based on PubMed, MEDLINE, and Google Scholar using keywords: Salvadora persica, S. persica, Miswak, Dentistry, and Dental. All relevant articles were reviewed to check if they would fit within the scope of this review, and then, the information was extracted. Results. Multiple biological effects of S. persica have been reported including antibacterial, antiviral, antifungal, antibiofilm, antioxidant, and even antiulcer effects. Dental effects were discussed and presented. Conclusion. The wide biological range of Salvadora persica's effects is promising for dental and nondental fields and allows for an expanded clinical application that has otherwise not been discussed in the literature.
Collapse
|
10
|
Youssef B, Ramadan KS, ElShebiney S, Ibrahim EA. Antidepressant‐like effects of aqueous extracts of miswak (
Salvadora persica
) and date palm (
Phoenix dactylifera
) on depression‐like behaviors using
CUMS
model in male rats. J Food Biochem 2022; 46:e14164. [DOI: 10.1111/jfbc.14164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/05/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Basma Youssef
- Biochemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Kholoud S. Ramadan
- Biochemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Shaimaa ElShebiney
- Department of Narcotics, Poisons and Ergogenic Aids National Research Centre Cairo Egypt
| | - Ehab A. Ibrahim
- Biochemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
11
|
GC/MS Profiling and Ex Vivo Antibacterial Activity of Salvadora persica (Siwak) against Enterococcus faecalis as Intracanal Medicament. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6333867. [PMID: 34987597 PMCID: PMC8723863 DOI: 10.1155/2021/6333867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Salvadora persica L. (S. persica, Siwak) has been used for many centuries as oral hygiene tools, particularly in Saudi Arabia. This study aimed to assess the effectiveness of S. persica petroleum ether extract (SPE) as an intracanal bactericidal for endodontic treatment against Enterococcus faecalis. Calcium hydroxide Ca(OH)2 gold standard intracanal medicament was used for comparison. METHODS The gas chromatography mass spectrometry (GC/MS) analysis was carried out to identify the components of SPE. First, the consistency of SPE was accomplished according to ANSI/ADA specification no 57. Forty-five single-rooted mandibular premolars were infected with that of E. faecalis suspension. Colony-forming units (CFU) were counted before the medicaments' application (CFU-1) and after seven days of their applications (CFU-2). Group I: SPE, Group II: positive control Ca(OH)2, and Group III: saline solution negative control. The microdilution method was applied to determine minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SPE. RESULTS Thirty-two compounds were identified (89.09%), with main components of benzyl isothiocyanate (BITC) (33.32%) and steroids (34%). CFU before and after using SPE and Ca(OH)2 recorded a statistically significant reduction in bacterial count (P=0.006) and (P=0.01), respectively. There was an insignificant difference between CFU after using SPE and Ca(OH)2 (P=0.210). On the contrary, comparing both medicaments with the negative control saline group resulted in significant differences, (P=0.001) and (P=0.007), respectively. Moreover, the equality of minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) of SPE is recorded. CONCLUSION This finding could be referred to the high content of bactericidal BITC in synergism with other antimicrobial components, representing 70.71% of SPE. Thus, SPE is a good candidate as an intracanal medicament, which warrants further investigation.
Collapse
|
12
|
HPLC/MS n Profiling and Healing Activity of a Muco-Adhesive Formula of Salvadora persica against Acetic Acid-Induced Oral Ulcer in Rats. Nutrients 2021; 14:nu14010028. [PMID: 35010903 PMCID: PMC8746813 DOI: 10.3390/nu14010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Salvadora persica L. (S. persica, Siwak) is an ethnic plant that is widely used for improving oral hygiene. This study aimed to provide a phytochemical profiling of S. persica ethyl acetate fraction (SPEAF) and to evaluate the healing activity of a muco-adhesive formula of the fraction against acetic acid-induced oral ulcers in rats. HPLC-ESI-QTOF-MS-MS analysis of SPEAF resulted in the tentative identification of 56 metabolites containing fatty acids (23%), urea derivatives (10.5%) and sulphur compounds (10%), in addition to several amides, polyphenols and organic acids (6.5%, 5% and 2%, respectively). For the first time, 19 compounds were identified from S. persica. In vitro and in vivo experiments indicated that the extract is non-toxic. SPEAF exhibited superior healing activities compared to both the negative and positive control groups on days 7 and 14 of tongue ulcer induction. This was confirmed by histopathological examinations of haematoxylin and eosin-stained (H&E) and Masson's trichrome-stained tongue sections. Moreover, SPEAF showed potent anti-inflammatory activities, as evidenced by the inhibited expression of interleukin-6 (IL-6) and tumour necrosis alpha (TNF-α). Moreover, SPEAF exhibited potent antioxidant activity, as it prevented malondialdehyde (MDA) accumulation, reduced glutathione (GSH) depletion and superoxide dismutase (SOD) exhaustion. SPEAF significantly enhanced hydroxyproline tongue content and upregulated collagen type I alpha 1 (Col1A1) mRNA expression. SPEAF also improved angiogenesis, as shown by the increased mRNA expression of the angiopoietin-1 (Ang-1). In conclusion, S. persica has a wide range of secondary metabolites and ameliorates acetic acid-induced tongue ulcers in rats. This can be attributed, at least partly, to its anti-inflammatory, antioxidant, procollagen and angiogenic activities. These findings provide support and validity for the use of S. persica as a traditional and conventional treatment for oral disorders.
Collapse
|
13
|
Malayil D, Jose B, Narayanankutty A, Ramesh V, Rajagopal R, Alfarhan A. Phytochemical profiling of Azima tetracantha Lam. leaf methanol extract and elucidation of its potential as a chain-breaking antioxidant, anti-inflammatory and anti-proliferative agent. Saudi J Biol Sci 2021; 28:6040-6044. [PMID: 34764736 PMCID: PMC8568843 DOI: 10.1016/j.sjbs.2021.07.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/02/2023] Open
Abstract
Azima tetracantha, a traditional medicinal plant included in the order Brassicales and family Salvadoraceae, is widely used as a dietary supplement in folklore medicines. The plant is also used for the treatment of rheumatism, diarrhea and other inflammatory disorders. The present investigation focused on the phytochemical composition, radical scavenging, reducing potential and anti-proliferative activities of the A. tetracantha leaves. Quantitative estimation of the polyphenols and flavonoids revealed significantly elevated levels in the methanol extract. Corroborating with this, methanol extract exhibited higher in vitro anti-radical scavenging effect against 2,2-diphenyl-1- picrylhydrazyl (34.14 ± 2.19 μg/mL), and hydrogen peroxide (44.96 ± 1.77 μg/mL), as well as ferric reducing properties (58.24 ± 6.98 μg/mL). The methanolic extract also showed strong lipoxygenase (71.42 ± 6.36 μg/mL) and nitric oxide inhibitory activities (94.23 ± 8.11 μg/mL). Cytotoxic activity against MCF7 cells was found to be higher (IC50= 37.62 ± 2.94 μg/mL), than that of MDAMB231 cells (IC50= 69.11 ± 5.02 μg/mL). The qPCR-based analysis indicated dose-dependent increase in the expression of the pro-apoptotic genes such as executioner caspases and apoptotic protease activating factor-1. Overall, the results indicated the possible use of methanol extract of A. tetracantha leaves as a chain-breaking antioxidant molecule and are capable of inhibiting inflammatory enzymes and the proliferative potential of breast cancer cells.
Collapse
Affiliation(s)
- Dhilna Malayil
- PG and Research Department of Zoology, Malabar Christian College, Calicut, Kerala, India
| | - Boby Jose
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| | - Varsha Ramesh
- Department of Biotechnology, Deakin University, Victoria, Australia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|