1
|
Bhratee A, Chatterjee D, Kaur R, Singh S. Protective mechanism of apigenin in proton pump inhibitor-associated progressive cognitive impairment in adult zebrafish via targeting GSK-3β pathway. Metab Brain Dis 2025; 40:155. [PMID: 40111567 DOI: 10.1007/s11011-025-01579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Cognitive impairment is characterized by memory loss and difficulty in focusing, remembering, adhering to directions, and solving problems; commonly seen in an elderly population. Apigenin (APG) (4', 5, 7-trihydroxyflavone) is a flavonoid with several positive health benefits, including chemoprevention, antioxidant and can suppress inflammatory responses by inhibiting TNF-α and IL-1β levels. In this experimental study, we observed the possible neuroprotective effects of APG in the zebrafish model exposed to Lansoprazole (LPZ), a proton pump inhibitor known to induce cognitive impairment through hyperactivation of GSK-3β pathway. This experiment involves 12 adult zebrafish per group, where one group received LPZ (100 mg) as a toxin for 7 days and APG (25, 50, and 100 mg/kg) as treatment, while DPZ (5 mg/kg) served as a standard comparison over the same period. Neurobehavioral tests such as T-Maze, Novel Tank Test (NTT), and Novel Object Recognition (NOR) were performed. Several biochemical assessments were also performed to evaluate the level of lipid peroxidation (LPO), glutathione (GSH), nitrite (NO), acetylcholinesterase activity (AChEs), catalase activity, neurotransmitters (GABA and glutamate), neuroinflammatory markers (IL-1β, TNF-α, and IL-10), and histopathological analysis. The results showed that apigenin enhanced memory function, improved neurotransmitter balance, decreased oxidative stress markers, regulated the production of proinflammatory cytokines, and inhibited GSK-3β activity. Additionally, the co-administration of a GSK-3β inhibitor further promoted neuroprotection and cognitive enhancement facilitated by apigenin, highlighting the importance of the GSK-3β signaling pathway. These findings highlight the potential of apigenin as a natural compound for mitigating cognitive dysfunction. However, this study should also include long-term toxicity assessments and deeper molecular analysis to elucidate Apigenin's mechanism of action fully. Future research should address these gaps to validate its therapeutic potential.
Collapse
Affiliation(s)
- Anjalee Bhratee
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Dhrita Chatterjee
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Romanpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Shah K, Singh D, Agrawal R, Garg A. Current Developments in the Delivery of Gastro-Retentive Drugs. AAPS PharmSciTech 2025; 26:57. [PMID: 39920556 DOI: 10.1208/s12249-025-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
The pharmaceutical industry has expressed a lot of interest in site specific drug delivery & oral controlled release to increase treatment efficiency. The idea of a unique drug delivery system was developed to address several concerns with the physicochemical characteristics of drug molecules and the associated formulations. The use of gastro retentive systems for drug delivery, which focus on site-specific drug release for either systemic or local effects in the stomach, is one of these cutting-edge strategies for lengthening gastric residency time. This approach is especially useful for drugs that have a small window of upper gastro intestinal tract absorption. This review has discussed various gastro-retentive techniques, including floating & non-floating systems. With a focus on the numerous gastro retentive approaches that have lately emerged as the most efficient methods for site specific oral controlled release drug administration, the aim of this study on gastro retentive drug delivery systems was to synthesise the most current findings. We have highlighted the major reasons affecting gastric retention so that you may comprehend the many physiological challenges involved. Next, we discussed the different gastro retentive strategies that have been developed and improved to date, including floating, high density, mucoadhesive, unfoldable, expandable, super porous hydrogel, & magnetic systems. The benefits of gastro retentive medication administration techniques were then thoroughly discussed.
Collapse
Affiliation(s)
- Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India.
| | - Disha Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| |
Collapse
|
3
|
Chitas R, Fonseca DR, Parreira P, Martins MCL. Targeted nanotherapeutics for the treatment of Helicobacter pylori infection. J Biomed Sci 2024; 31:78. [PMID: 39128983 DOI: 10.1186/s12929-024-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Helicobacter pylori infection is involved in gastric diseases such as peptic ulcer and adenocarcinoma. Approved antibiotherapies still fail in 10 to 40% of the infected patients and, in this scenario, targeted nanotherapeutics emerged as powerful allies for H. pylori eradication. Nano/microparticles conjugated with H. pylori binding molecules were developed to eliminate H. pylori by either (i) blocking essential mechanisms of infection, such as adhesion to gastric mucosa or (ii) binding and killing H. pylori through the release of drugs within the bacteria or at the site of infection. Glycan antigens (as Lewis B and sialyl-Lewis X), pectins, lectins, phosphatidylethanolamine and epithelial cell membranes were conjugated with nano/microparticles to successfully block H. pylori adhesion. Urea-coated nanoparticles were used to improve drug delivery inside bacteria through H. pylori UreI channel. Moreover, nanoparticles coated with antibodies against H. pylori and loaded with sono/photosensitizers, were promising for their application as targeted sono/photodynamic therapies. Further, non-specific H. pylori nano/microparticles, but only active in the acidic gastric environment, coated with binders to bacterial membrane, extracellular polymeric substances or to high temperature requirement A protease, were evaluated. In this review, an overview of the existing nanotherapeutics targeting H. pylori will be given and their rational, potential to counteract infection, as well as level of development will be presented and discussed.
Collapse
Affiliation(s)
- Rute Chitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana R Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Porto, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
4
|
Qureshi S, Alavi SE, Mohammed Y. Microsponges: Development, Characterization, and Key Physicochemical Properties. Assay Drug Dev Technol 2024; 22:229-245. [PMID: 38661260 DOI: 10.1089/adt.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Microsponges are promising drug delivery carriers with versatile characteristics and controlled release properties for the delivery of a wide range of drugs. The microsponges will provide an optimized therapeutic effect, when delivered at the site of action without rupturing, then releasing the cargo at the predetermined time and area. The ability of the microsponges to effectively deliver the drug in a controlled manner depends on the material composition. This comprehensive review entails knowledge on the design parameters of an optimized microsponge drug delivery system and the controlled release properties of microsponges that reduces the side effects of drugs. Furthermore, the review delves into the fabrication techniques of microsponges, the mechanism of drug release from the microsponges, and the regulatory requirements of the U.S. Food and Drug Administration (FDA) for the successful marketing of microsponge formulation. The review also examines the patented formulations of microsponges. The prospects of these sophisticated drug delivery systems for improved clinical outcomes are highlighted.
Collapse
Affiliation(s)
- Sundus Qureshi
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Jafar M, Ahmad Khan MS, Akbar MJ, AlSaihaty HS, Alasmari SS. Obliteration of H. pylori infection through the development of a novel thyme oil laden nanoporous gastric floating microsponge. Heliyon 2024; 10:e29246. [PMID: 38638985 PMCID: PMC11024545 DOI: 10.1016/j.heliyon.2024.e29246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Thyme oil (TO) is a valuable essential oil believed to possess a variety of bioactivities, including antibacterial, anticancer, and antioxidant properties. These attributes grant TO the excellent capability to treat a wide range of diseases, particularly the effective eradication of Helicobacter pylori infection in the stomach. However, its practical use is limited by its low stability under atmospheric conditions. Our current research aims to encapsulate TO in eudragit (EGT) microsponges to enhance its stability and improve its effectiveness against H. pylori. The TO microsponges were prepared using EGT as a polymer, polysorbate 80 as a stabilizer, and dichloromethane (DCM) as a solvent via the quasi-emulsion solvent evaporation method. The product yield, particle size, surface morphology, entrapment efficiency, drug-polymer interaction, in-vitro floating, and in-vitro drug release of the microsponges were evaluated. The most promising microsponge was tested against H. pylori ATCC 43504 strains. The results showed that the microsponges exhibited a high product yield (ranging from 41 % ± 0.75-81.27 % ± 1.13), excellent entrapment efficiency (ranging from 63.01 % ± 0.79-88.64 % ± 0.98), prolonged in-vitro floating time (more than 12 h) and sustained in-vitro drug release for 18 h (81.53 %). Scanning electron microscopy results indicated that the microsponges were spherical in shape with a spongy surface. The average particle size of the selected microsponges was determined to be 49.79 ± 1.4 μm, and their average pore size was measured to be 0.81 ± 0.14 μm. DSC study results revealed that TO was physically entrapped in the microsponges. In-vitro anti-H. pylori activity studies demonstrated that TO in microsponge was more effective against H. pylori than pure TO. In conclusion, the developed microsponges containing thyme oil provide a promising alternative for the efficient targeting and eradication of H. Pylori infection.
Collapse
Affiliation(s)
- Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Mohammad Jamal Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Hadi Saleem AlSaihaty
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Sultan Saad Alasmari
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| |
Collapse
|
6
|
Wang X, Liu J, Ma Y, Cui X, Chen C, Zhu G, Sun Y, Tong L. Development of A Nanostructured Lipid Carrier-Based Drug Delivery Strategy for Apigenin: Experimental Design Based on CCD-RSM and Evaluation against NSCLC In Vitro. Molecules 2023; 28:6668. [PMID: 37764446 PMCID: PMC10534567 DOI: 10.3390/molecules28186668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the main cause of cancer-related deaths worldwide, with a low five-year survival rate, posing a serious threat to human health. In recent years, the delivery of antitumor drugs using a nanostructured lipid carrier (NLC) has become a subject of research. This study aimed to develop an apigenin (AP)-loaded nanostructured lipid carrier (AP-NLC) by melt sonication using glyceryl monostearate (GMS), glyceryl triacetate, and poloxamer 188. The optimal prescription of AP-NLC was screened by central composite design response surface methodology (CCD-RSM) based on a single-factor experiment using encapsulation efficiency (EE%) and drug loading (DL%) as response values and then evaluated for its antitumor effects on NCI-H1299 cells. A series of characterization analyses of AP-NLC prepared according to the optimal prescription were carried out using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Subsequent screening of the lyophilization protectants revealed that mannitol could better maintain the lyophilization effect. The in vitro hemolysis assay of this formulation indicated that it may be safe for intravenous injection. Moreover, AP-NLC presented a greater ability to inhibit the proliferation, migration, and invasion of NCI-H1299 cells compared to AP. Our results suggest that AP-NLC is a safe and effective nano-delivery vehicle that may have beneficial potential in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (X.W.); (Y.M.); (C.C.); (G.Z.); (Y.S.)
| | - Jinli Liu
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang 157000, China;
| | - Yufei Ma
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (X.W.); (Y.M.); (C.C.); (G.Z.); (Y.S.)
| | - Xinyu Cui
- Department of Public Health, Mudanjiang Medical University, Mudanjiang 157000, China;
| | - Cong Chen
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (X.W.); (Y.M.); (C.C.); (G.Z.); (Y.S.)
| | - Guowei Zhu
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (X.W.); (Y.M.); (C.C.); (G.Z.); (Y.S.)
| | - Yue Sun
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (X.W.); (Y.M.); (C.C.); (G.Z.); (Y.S.)
| | - Lei Tong
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (X.W.); (Y.M.); (C.C.); (G.Z.); (Y.S.)
| |
Collapse
|