1
|
Menger MM, Manuschewski R, Hans S, Braun BJ, Kayali MKDE, Ehnert S, Ampofo E, Wrublewsky S, Menger MD, Histing T, Laschke MW. Age-related alterations of angiogenesis, inflammation and bone microarchitecture during fracture healing in mice. GeroScience 2025:10.1007/s11357-025-01584-y. [PMID: 40108067 DOI: 10.1007/s11357-025-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The surgical treatment of geriatric patients represents a major challenge in traumatology. It is well known that aging affects fracture healing. However, the exact pathophysiology of age-related changes in angiogenesis, inflammation and bone remodeling remains still elusive. Therefore, we herein studied the differences of femoral fracture healing in young adult (3-4 months) and aged (16-18 months) CD-1 mice by using a stable closed femoral fracture model with intramedullary screw fixation. The callus tissue was analyzed by means of X-ray, micro-computed tomography (µCT), histology and immunohistochemistry. We found a deteriorated trabecular architecture and a reduced bone formation within the callus tissue of aged mice. Moreover, aged animals showed an increased number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts at an early healing time point, whereas the fraction of mature α-smooth muscle actin (SMA)-positive microvessels was significantly reduced. Furthermore, the numbers of macrophages and granulocytes were higher in the callus tissue of aged animals at the end of the healing process. Taken together, these results demonstrate a delayed femoral fracture healing in aged CD-1 mice. This is most likely caused by an early overshooting osteoclast response, a decelerated maturation of the callus microvasculature and a late increased recruitment of pro-inflammatory cells. Targeting these alterations may contribute to the development of novel treatment approaches for the stimulation of bone regeneration in geriatric patients.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| | - Ruben Manuschewski
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Sandra Hans
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Moses K D El Kayali
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
2
|
Glatt V, Bartnikowski N, Bartnikowski M, Aguilar L, Schuetz M, Tetsworth K. Intramedullary implant stability affects patterns of fracture healing in mice with morphologically different bone phenotypes. Bone 2024; 179:116978. [PMID: 37993038 DOI: 10.1016/j.bone.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Almost all prior mouse fracture healing models have used needles or K-wires for fixation, unwittingly providing inadequate mechanical stability during the healing process. Our contention is that the reported outcomes have predominantly reflected this instability, rather than the impact of diverse biological conditions, pharmacologic interventions, exogenous growth factors, or genetic considerations. This important issue becomes obvious upon a critical review of the literature. Therefore, the primary aim of this study was to demonstrate the significance of mouse-specific implants designed to provide both axial and torsional stability (Screw and IM Nail) compared to conventional pins (Needle and K-wires), even when used in mice with differently sized marrow canals and diverse genetic backgrounds. B6 (large medullary canal), DBA, and C3H (smaller medullary canals) mice were employed, all of which have different bone morphologies. Closed femoral fractures were created and stabilized with intramedullary implants that provide different mechanical conditions during the healing process. The most important finding of this study was that appropriately designed mouse-specific implants, providing both axial and torsional stability, had the greatest influence on bone healing outcomes regardless of the different bone morphologies encountered. For instance, unstable implants in the B6 strain (largest medullary canal) resulted in significantly greater callus, with a fracture region mainly comprising trabecular bone along with the presence of cartilage 28 days after surgery. The DBA and C3H strains (with smaller medullary canals) instead formed significantly less callus, and only had a small amount of intracortical trabeculation remaining. Moreover, with more stable fracture fixation a higher BV/TV was observed and cortices were largely restored to their original dimensions and structure, indicating an accelerated healing and remodeling process. These observations reveal that the diaphyseal cortical thickness, influenced by the genetic background of each strain, played a pivotal role in determining the amount of bone formation in response to the fracture. These findings are highly important, indicating the rate and type of tissue formed is a direct result of mechanical instability, and this most likely would mask the true contribution of the tested genes, genetic backgrounds, or various therapeutic agents administered during the bone healing process.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedic Surgery, University of Texas Health Science Center, San Antonio, TX, United States of America; Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center, San Antonio, TX, United States of America; Queensland University of Technology, Brisbane, Australia; Orthopaedic Research Centre of Australia, Brisbane, Australia.
| | | | | | - Leonardo Aguilar
- Department of Orthopaedic Surgery, University of Texas Health Science Center, San Antonio, TX, United States of America; Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center, San Antonio, TX, United States of America
| | | | - Kevin Tetsworth
- Department of Orthopaedic Surgery, The Royal Brisbane and Women's Hospital, Brisbane, Australia; Orthopaedic Research Centre of Australia, Brisbane, Australia
| |
Collapse
|
3
|
Chronic Pain after Bone Fracture: Current Insights into Molecular Mechanisms and Therapeutic Strategies. Brain Sci 2022; 12:brainsci12081056. [PMID: 36009119 PMCID: PMC9406150 DOI: 10.3390/brainsci12081056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bone fracture following traumatic injury or due to osteoporosis is characterized by severe pain and motor impairment and is a major cause of global mortality and disability. Fracture pain often originates from mechanical distortion of somatosensory nerve terminals innervating bones and muscles and is maintained by central sensitization. Chronic fracture pain (CFP) after orthopedic repairs is considered one of the most critical contributors to interference with the physical rehabilitation and musculoskeletal functional recovery. Analgesics available for CFP in clinics not only have poor curative potency but also have considerable side effects; therefore, it is important to further explore the pathogenesis of CFP and identify safe and effective therapies. The typical physiopathological characteristics of CFP are a neuroinflammatory response and excitatory synaptic plasticity, but the specific molecular mechanisms involved remain poorly elucidated. Recent progress has deepened our understanding of the emerging properties of chemokine production, proinflammatory mediator secretion, caspase activation, neurotransmitter release, and neuron-glia interaction in initiating and sustaining synaptogenesis, synaptic strength, and signal transduction in central pain sensitization, indicating the possibility of targeting neuroinflammation to prevent and treat CFP. This review summarizes current literature on the excitatory synaptic plasticity, microgliosis, and microglial activation-associated signaling molecules and discusses the unconventional modulation of caspases and stimulator of interferon genes (STING) in the pathophysiology of CFP. We also review the mechanisms of action of analgesics in the clinic and their side effects as well as promising therapeutic candidates (e.g., specialized pro-resolving mediators, a caspase-6 inhibitor, and a STING agonist) for pain relief by the attenuation of neuroinflammation with the aim of better managing patients undergoing CFP in the clinical setting.
Collapse
|
4
|
Hixon KR, Katz DB, McKenzie JA, Miller AN, Guilak F, Silva MJ. Cryogel Scaffold-Mediated Delivery of Adipose-Derived Stem Cells Promotes Healing in Murine Model of Atrophic Non-Union. Front Bioeng Biotechnol 2022; 10:851904. [PMID: 35600896 PMCID: PMC9117654 DOI: 10.3389/fbioe.2022.851904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Non-union is defined as the permanent failure of a bone to heal and occurs clinically in 5% of fractures. Atrophic non-unions, characterized by absent/minimal callus formation, are poorly understood and difficult to treat. We recently demonstrated a novel murine model of atrophic non-union in the 3.6Col1A1-tk (Col1-tk) mouse, wherein dosing with the nucleoside analog ganciclovir (GCV) was used to deplete proliferating osteoprogenitor cells, leading to a radiographic and biomechanical non-union after the mid-shaft femur fracture. Using this Col1-tk atrophic non-union model, we hypothesized that the scaffold-mediated lentiviral delivery of doxycycline-inducible BMP-2 transgenes would induce osteogenesis at the fracture site. Cryogel scaffolds were used as a vehicle for GFP+ and BMP-2+ cell delivery to the site of non-union. Cryogel scaffolds were biofabricated through the cross-linking of a chitosan-gelatin polymer solution at subzero temperatures, which results in a macroporous, spongy structure that may be advantageous for a bone regeneration application. Murine adipose-derived stem cells were seeded onto the cryogel scaffolds, where they underwent lentiviral transduction. Following the establishment of atrophic non-unions in the femurs of Col1-tk mice (4 weeks post-fracture), transduced, seeded scaffolds were surgically placed around the site of non-union, and the animals were given doxycycline water to induce BMP-2 production. Controls included GFP+ cells on the cryogel scaffolds, acellular scaffolds, and sham (no scaffold). Weekly radiographs were taken, and endpoint analysis included micro-CT and histological staining. After 2 weeks of implantation, the BMP-2+ scaffolds were infiltrated with cartilage and woven bone at the non-union site, while GFP+ scaffolds had woven bone formation. Later, timepoints of 8 weeks had woven bone and vessel formation within the BMP-2+ and GFP + scaffolds with cortical bridging of the original fracture site in both groups. Overall, the cell-seeded cryogels promoted osseous healing. However, while the addition of BMP-2 promoted the endochondral ossification, it may provide a slower route to healing. This proof-of-concept study demonstrates the potential for cellularized cryogel scaffolds to enhance the healing of non-unions.
Collapse
Affiliation(s)
- Katherine R. Hixon
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Dakota B. Katz
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University, St. Louis, MO, United States
- Shriners Hospitals for Children—St. Louis, St. Louis, MO, United States
| | - Jennifer A. McKenzie
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, United States
| | - Anna N. Miller
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University, St. Louis, MO, United States
- Shriners Hospitals for Children—St. Louis, St. Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University, St. Louis, MO, United States
| |
Collapse
|
5
|
Lowen GB, Garrett KA, Moore-Lotridge SN, Uppuganti S, Guelcher SA, Schoenecker JG, Nyman JS. Effect of Intramedullary Nailing Patterns on Interfragmentary Strain in a Mouse Femur Fracture: A Parametric Finite Element Analysis. J Biomech Eng 2022; 144:051007. [PMID: 34802060 PMCID: PMC8822464 DOI: 10.1115/1.4053085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Delayed long bone fracture healing and nonunion continue to be a significant socioeconomic burden. While mechanical stimulation is known to be an important determinant of the bone repair process, understanding how the magnitude, mode, and commencement of interfragmentary strain (IFS) affect fracture healing can guide new therapeutic strategies to prevent delayed healing or nonunion. Mouse models provide a means to investigate the molecular and cellular aspects of fracture repair, yet there is only one commercially available, clinically-relevant, locking intramedullary nail (IMN) currently available for studying long bone fractures in rodents. Having access to alternative IMNs would allow a variety of mechanical environments at the fracture site to be evaluated, and the purpose of this proof-of-concept finite element analysis study is to identify which IMN design parameters have the largest impact on IFS in a murine transverse femoral osteotomy model. Using the dimensions of the clinically relevant IMN as a guide, the nail material, distance between interlocking screws, and clearance between the nail and endosteal surface were varied between simulations. Of these parameters, changing the nail material from stainless steel (SS) to polyetheretherketone (PEEK) had the largest impact on IFS. Reducing the distance between the proximal and distal interlocking screws substantially affected IFS only when nail modulus was low. Therefore, IMNs with low modulus (e.g., PEEK) can be used alongside commercially available SS nails to investigate the effect of initial IFS or stability on fracture healing with respect to different biological conditions of repair in rodents.
Collapse
Affiliation(s)
- Gregory B. Lowen
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235
| | - Katherine A. Garrett
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232
| | - Stephanie N. Moore-Lotridge
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Scott A. Guelcher
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235; Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Division of Clinical Pharmacology, 1211 Medical Center Dr, Nashville, TN 37217
| | - Jonathan G. Schoenecker
- Vanderbilt University, Department of Pharmacology, 465 21 Ave South, 7124 Medical Research Building III, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, 1161 21 Ave S C-3322 Medical Center North, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Pediatrics, 2200 Children's Way, Suite 2404, Nashville, TN 37232
| | - Jeffry S. Nyman
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Tennessee Valley Healthcare System, Department of Veterans Affairs, 1310 24 Ave. S, Nashville, TN 37212
| |
Collapse
|
6
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Menger MM, Laschke MW, Scheuer C, Bauer D, Bleimehl M, Später T, Rollmann MF, Braun BJ, Herath SC, Raza A, Menger MD, Histing T. Establishment of a reliable model to study the failure of fracture healing in aged mice. J Gerontol A Biol Sci Med Sci 2021; 77:909-917. [PMID: 34626193 DOI: 10.1093/gerona/glab304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
The failure of fracture healing represents a substantial clinical problem. Moreover, aged patients demonstrate an elevated risk for failed bone healing. However, murine models to study the failure of fracture healing are established only in young adult animals. Therefore, the aim of this study was to develop a reliable model to study failed fracture healing in aged mice. After creation of a 1.8 mm segmental defect and periosteal resection, femora of aged mice (18-20 months) and young adult control mice (3-4 months) were stabilized by pin-clip fixation. Segmental defects were analyzed by means of biomechanics, X-ray and micro-computed tomography (µCT), as well as histomorphometric, immunohistochemical and Western blot analysis. After 10 weeks all animals showed a complete lack of osseous bridging, resulting in fracture healing failure. Segmental defects in aged mice revealed a reduced bone formation and vascularization when compared to young adult mice. This was associated with a decreased expression of bone formation markers. In addition, we detected a reduced number of tartrate-resistance acid phosphatase (TRAP)-positive osteoclasts and an elevated osteoprotegerin (OPG)/receptor activator of NF-ĸB ligand (RANKL)-ratio in aged animals, indicating a reduced osteoclast activity. Moreover, aged animals showed also an enhanced inflammatory response, characterized by an increased infiltration of macrophages within the callus tissue. Taken together, we herein report for the first time a reliable model to study fracture healing failure in aged mice. In the future, the use of this model enables to study novel therapeutic strategies and molecular mechanics of failed fracture healing during aging.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - David Bauer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michelle Bleimehl
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Ahsan Raza
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Tina Histing
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
8
|
Shen H, Gardner AM, Vyas J, Ishida R, Tawfik VL. Modeling Complex Orthopedic Trauma in Rodents: Bone, Muscle and Nerve Injury and Healing. Front Pharmacol 2021; 11:620485. [PMID: 33597884 PMCID: PMC7882733 DOI: 10.3389/fphar.2020.620485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Orthopedic injury can occur from a variety of causes including motor vehicle collision, battlefield injuries or even falls from standing. Persistent limb pain is common after orthopedic injury or surgery and presents a unique challenge, as the initiating event may result in polytrauma to bone, muscle, and peripheral nerves. It is imperative that we understand the tissue-specific and multicellular response to this unique type of injury in order to best develop targeted treatments that improve healing and regeneration. In this Mini Review we will first discuss current rodent models of orthopedic trauma/complex orthotrauma. In the second section, we will focus on bone-specific outcomes including imaging modalities, biomechanical testing and immunostaining for markers of bone healing/turnover. In the third section, we will discuss muscle-related pathology including outcome measures of fibrosis, muscle regeneration and tensile strength measurements. In the fourth section, we will discuss nervous system-related pathology including outcome measures of pain-like responses, both reflexive and non-reflexive. In all sections we will consider parallels between preclinical outcome measures and the functional and mechanistic findings of the human condition.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Juhee Vyas
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Ryosuke Ishida
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Anesthesiology, Shimane University, Shimane, Japan
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
10
|
Gunderson ZJ, Campbell ZR, McKinley TO, Natoli RM, Kacena MA. A comprehensive review of mouse diaphyseal femur fracture models. Injury 2020; 51:1439-1447. [PMID: 32362447 PMCID: PMC7323889 DOI: 10.1016/j.injury.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Complications related to treatment of long bone fractures still stand as a major challenge for orthopaedic surgeons. Elucidation of the mechanisms of bone healing and development, and the subsequent alteration of these mechanisms to improve outcomes, typically requires animal models as an intermediary between in vitro and human clinical studies. Murine models are some of the most commonly used in translational research, and mouse fracture models are particularly diverse, offering a wide variety of customization with distinct benefits and limitations depending on the study. This review critically examines three common femur fracture models in the mouse, namely cortical hole, 3-point fracture (Einhorn), and segmental bone defect. We lay out the general procedure for execution of each model, evaluate the practical implications and important advantages/disadvantages of each and describe recent innovations. Furthermore, we explore the applications that each model is best adapted for in the context of the current state of murine orthopaedic research.
Collapse
Affiliation(s)
- Zachary J. Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Zachery R. Campbell
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Todd O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Roman M. Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA,Corresponding Author: Melissa A. Kacena, Ph.D., Director of Basic and Translational Research, Professor of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN 46202, (317) 278-3482 – office, (317) 278-9568 – fax
| |
Collapse
|
11
|
Kaur A, Mohan S, Rundle CH. A segmental defect adaptation of the mouse closed femur fracture model for the analysis of severely impaired bone healing. Animal Model Exp Med 2020; 3:130-139. [PMID: 32613172 PMCID: PMC7323699 DOI: 10.1002/ame2.12114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To better characterize nonunion endochondral bone healing and evaluate novel therapeutic approaches for critical size defect healing in clinically challenging bone repair, a segmental defect model of bone injury was adapted from the three-point bending closed fracture technique in the murine femur. METHODS The mouse femur was surgically stabilized with an intramedullary threaded rod with plastic spacers and the defect adjusted to different sizes. Healing of the different defects was analyzed by radiology and histology to 8 weeks postsurgery. To determine whether this model was effective for evaluating the benefits of molecular therapy, BMP-2 was applied to the defect and healing then examined. RESULTS Intramedullary spacers were effective in maintaining the defect. Callus bone formation was initiated but was arrested at defect sizes of 2.5 mm and above, with no more progress in callus bone development evident to 8 weeks healing. Cartilage development in a critical size defect attenuated very early in healing without bone development, in contrast to the closed femur fracture healing, where callus cartilage was replaced by bone. BMP-2 therapy promoted osteogenesis of the resident cells of the defect, but there was no further callus development to indicate that healing to pre-surgery bone structure was successful. CONCLUSIONS This segmental defect adaptation of the closed femur fracture model of murine bone repair severely impairs callus development and bone healing, reflecting a challenging bone injury. It is adjustable and can be compared to the closed fracture model to ascertain healing deficiencies and the efficacy of therapeutic approaches.
Collapse
Affiliation(s)
- Amandeep Kaur
- Musculoskeletal Disease CenterResearch Service (151)Jerry L. Pettis Memorial Veterans Administration Medical CenterLoma LindaCAUSA
| | - Subburaman Mohan
- Musculoskeletal Disease CenterResearch Service (151)Jerry L. Pettis Memorial Veterans Administration Medical CenterLoma LindaCAUSA
- Department of MedicineLoma Linda UniversityLoma LindaCAUSA
- Department of Orthopedic SurgeryLoma Linda UniversityLoma LindaCAUSA
| | - Charles H. Rundle
- Musculoskeletal Disease CenterResearch Service (151)Jerry L. Pettis Memorial Veterans Administration Medical CenterLoma LindaCAUSA
- Department of MedicineLoma Linda UniversityLoma LindaCAUSA
| |
Collapse
|
12
|
Kelly RR, McCrackin MA, Russell DL, Leddy LR, Cray JJ, LaRue AC. Murine Aseptic Surgical Model of Femoral Atrophic Nonunion. MethodsX 2020; 7:100898. [PMID: 32382524 PMCID: PMC7199014 DOI: 10.1016/j.mex.2020.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Although bone repair is typically an efficient process, an inadequate healing response can occur, with approximately 5-20% of fractures developing nonunion. Even with improved healing strategies and external fixation devices, overall rate of nonunion has not been significantly reduced, particularly for atrophic nonunion. Atrophic nonunion is characterized by sparse or no callus formation and is difficult to treat clinically, resulting in long-term pain and functional limitation. Reliable preclinical models are needed to study the pathophysiology of atrophic nonunion to create better treatment options. The MouseNail kit (RISystem, Landquart, Switzerland) provides a highly standardized approach in which stabilized segmental bone defects are achieved through interlocked intramedullary nailing. However, reliably performing this surgery is technically challenging, particularly while maintaining strict asepsis. Skilled and aseptic surgical execution is important and necessary because it ensures optimal animal welfare and reproducibility. Therefore, the aim of this paper is to describe:•Novel modifications to the MouseNail kit that allow for: 1) a completely aseptic surgical environment, including description of a hanging limb orthopedic aseptic preparation and 2) a reduction in fracture gap size necessary for induction of atrophic nonunion.•Pre- to post-operative recommendations to facilitate successful performance of murine orthopedic survival surgery.
Collapse
Affiliation(s)
- Ryan R Kelly
- Research Services, Ralph H. Johnson VA Medical Center
| | - Mary Ann McCrackin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA
| | | | - Lee R Leddy
- Department of Orthopedics, The Medical University of South Carolina, Charleston, SC
| | - James J Cray
- Division of Anatomy, The Ohio State University, Columbus, OH
| | - Amanda C LaRue
- Research Services, Ralph H. Johnson VA Medical Center.,Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC
| |
Collapse
|
13
|
Collier CD, Hausman BS, Zulqadar SH, Din ES, Anderson JM, Akkus O, Greenfield EM. Characterization of a reproducible model of fracture healing in mice using an open femoral osteotomy. Bone Rep 2020; 12:100250. [PMID: 32090156 PMCID: PMC7025178 DOI: 10.1016/j.bonr.2020.100250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/26/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose The classic fracture model, described by Bonnarens and Einhorn in 1984, enlists a blunt guillotine to generate a closed fracture in a pre-stabilized rodent femur. However, in less experienced hands, this technique yields considerable variability in fracture pattern and requires highly-specialized equipment. This study describes a reproducible and low-cost model of mouse fracture healing using an open femoral osteotomy. Methods Femur fractures were produced in skeletally mature male and female mice using an open femoral osteotomy after intramedullary stabilization. Mice were recovered for up to 28 days prior to analysis with microradiographs, histomorphometry, a novel μCT methodology, and biomechanical torsion testing at weekly intervals. Results Eight mice were excluded due to complications (8/193, 4.1%), including unacceptable fracture pattern (2/193, 1.0%). Microradiographs showed progression of the fracture site to mineralized callus by 14 days and remodelling 28 days after surgery. Histomorphometry from 14 to 28 days revealed decreased cartilage area and maintained bone area. μCT analysis demonstrated a reduction in mineral surface from 14 to 28 days, stable mineral volume, decreased strut number, and increased strut thickness. Torsion testing at 21 days showed that fractured femurs had 61% of the ultimate torque, 63% of the stiffness, and similar twist to failure when compared to unfractured contralateral femurs. Conclusions The fracture model described herein, an open femoral osteotomy, demonstrated healing comparable to that reported using closed techniques. This simple model could be used in future research with improved reliability and reduced costs compared to the current options. This study characterized a simple and reproducible model of fracture healing in mice using an open femoral osteotomy. Analysis by x-ray, histomorphometry, µCT, and biomechanical testing demonstrated healing comparable to current models. This simple model could be used to increase investigation into fracture healing, delayed union, and non-union.
Collapse
Affiliation(s)
- C D Collier
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - B S Hausman
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - S H Zulqadar
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - E S Din
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J M Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - O Akkus
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - E M Greenfield
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Kelly RR, Mccrackin MA, Russell DL, Leddy LR, Cray JJ, Larue AC. Teaching Surgical Model Development in Research by Using Situated Learning and Instructional Scaffolding. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:321-328. [PMID: 30987688 DOI: 10.30802/aalas-jaalas-18-000090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Resources detailing the scope, details, and duration for teaching and learning surgical model development in research are poorly described. Situated learning and instructional scaffolding are useful skill-building tools. Herein, we discuss educational theory in the context of a training paradigm for surgical researchers, using our experience with a nonunion femoral fracture model as an example. Stages of learning include cognitive, associative, and autonomous stages. In surgical training, the cognitive stage involves the acquisition of basic knowledge, including anatomy, surgical approach, instrumentation, and suturing, which can be taught by using books, videos, skeletons, and cadavers. To these basic skills, the associative stage adds advanced techniques-including anesthesia, asepsis, hemostasis, and the full surgical procedure-through mentored nonsurvival surgical experiences. After a mentor has assured competence, trainees perform supervised and then independent survival surgeries to complete the autonomous stage. Through these stages, instructional scaffolding is applied in the context of a situated learning environment in which trainees learn in a layered approach through their own experiences. Thus, the proposed training paradigm is structured to teach trainees how to think and act as surgeons so they can adapt and grow, rather than only to ensure technical competency in a specific model. Development and mastery of complex surgical models may require as long as 6 mo to achieve optimal outcomes, depending on the preexisting skill of the research surgeons, technical difficulty, and the stage of model evolution.
Collapse
Affiliation(s)
- Ryan R Kelly
- Research Services, Ralph H Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina; Departments of Pathology and Laboratory Medicine, Orthopedics, Medical University of South Carolina, Charleston, South Carolina; Departments of Pathology and Laboratory Medicine, Orthopedics, Medical University of South Carolina, Charleston, South Carolina
| | - Mary Ann Mccrackin
- Research Services, Ralph H Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina; Departments of Pathology and Laboratory Medicine, Orthopedics, Medical University of South Carolina, Charleston, South Carolina; Departments of Comparative Medicine, Orthopedics, Medical University of South Carolina, Charleston, South Carolina
| | - Dayvia L Russell
- Research Services, Ralph H Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina; Departments of Pathology and Laboratory Medicine, Orthopedics, Medical University of South Carolina, Charleston, South Carolina
| | - Lee R Leddy
- Departments of Orthopedics, Medical University of South Carolina, Charleston, South Carolina
| | - James J Cray
- Division of Anatomy, The Ohio State University, Columbus, Ohio
| | - Andamanda C Larue
- Research Services, Ralph H Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina; Departments of Pathology and Laboratory Medicine, Orthopedics, Medical University of South Carolina, Charleston, South Carolina; Departments of Pathology and Laboratory Medicine, Orthopedics, Medical University of South Carolina, Charleston, South Carolina;,
| |
Collapse
|
15
|
Development of a novel murine delayed secondary fracture healing in vivo model using periosteal cauterization. Arch Orthop Trauma Surg 2019; 139:1743-1753. [PMID: 31399754 PMCID: PMC6825648 DOI: 10.1007/s00402-019-03255-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Delayed union and nonunion development remain a major clinical problematic complication during fracture healing, with partially unclear pathophysiology. Incidences range from 5 to 40% in high-risk patients, such as patients with periosteal damage. The periosteum is essential in adequate fracture healing, especially during soft callus formation. In this study, we hypothesize that inducing periosteal damage in a murine bone healing model will result in a novel delayed union model. MATERIALS AND METHODS A mid-shaft femoral non-critically sized osteotomy was created in skeletally mature C57BL/6 mice and stabilized with a bridging plate. In half of the mice, a thin band of periosteum adjacent to the osteotomy was cauterized. Over 42 days of healing, radiographic, biomechanical, micro-computed tomography and histological analysis was performed to assess the degree of fracture healing. RESULTS Analysis showed complete secondary fracture healing in the control group without periosteal injury. Whereas the periosteal injury group demonstrated less than half as much maximum callus volume (p < 0.05) and bridging, recovery of stiffness and temporal expression of callus growth and remodelling was delayed by 7-15 days. CONCLUSION This paper introduces a novel mouse model of delayed union without a critically sized defect and with standardized biomechanical conditions, which enables further investigation into the molecular biological, biomechanical, and biochemical processes involved in (delayed) fracture healing and nonunion development. This model provides a continuum between normal fracture healing and the development of nonunions.
Collapse
|
16
|
Williams JN, Li Y, Valiya Kambrath A, Sankar U. The Generation of Closed Femoral Fractures in Mice: A Model to Study Bone Healing. J Vis Exp 2018:58122. [PMID: 30176027 PMCID: PMC6128110 DOI: 10.3791/58122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bone fractures impose a tremendous socio-economic burden on patients, in addition to significantly affecting their quality of life. Therapeutic strategies that promote efficient bone healing are non-existent and in high demand. Effective and reproducible animal models of fractures healing are needed to understand the complex biological processes associated with bone regeneration. Many animal models of fracture healing have been generated over the years; however, murine fracture models have recently emerged as powerful tools to study bone healing. A variety of open and closed models have been developed, but the closed femoral fracture model stands out as a simple method for generating rapid and reproducible results in a physiologically relevant manner. The goal of this surgical protocol is to generate unilateral closed femoral fractures in mice and facilitate a post-fracture stabilization of the femur by inserting an intramedullary steel rod. Although devices such as a nail or a screw offer greater axial and rotational stability, the use of an intramedullary rod provides a sufficient stabilization for consistent healing outcomes without producing new defects in the bone tissue or damaging nearby soft tissue. Radiographic imaging is used to monitor the progression of callus formation, bony union, and subsequent remodeling of the bony callus. Bone healing outcomes are typically associated with the strength of the healed bone and measured with torsional testing. Still, understanding the early cellular and molecular events associated with fracture repair is critical in the study of bone tissue regeneration. The closed femoral fracture model in mice with intramedullary fixation serves as an attractive platform to study bone fracture healing and evaluate therapeutic strategies to accelerate healing.
Collapse
Affiliation(s)
- Justin N Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
| | - Yong Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
| | | | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine;
| |
Collapse
|
17
|
Histing T, Bremer P, Rollmann MF, Herath S, Klein M, Pohlemann T, Menger MD, Fritz T. A Minimally Invasive Model to Analyze Endochondral Fracture Healing in Mice Under Standardized Biomechanical Conditions. J Vis Exp 2018. [PMID: 29630050 DOI: 10.3791/57255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone healing models are necessary to analyze the complex mechanisms of fracture healing to improve clinical fracture treatment. During the last decade, an increased use of mouse models in orthopedic research was noted, most probably because mouse models offer a large number of genetically-modified strains and special antibodies for the analysis of molecular mechanisms of fracture healing. To control the biomechanical conditions, well-characterized osteosynthesis techniques are mandatory, also in mice. Here, we report on the design and use of a closed bone healing model to stabilize femur fractures in mice. The intramedullary screw, made of medical-grade stainless steel, provides through fracture compression an axial and rotational stability compared to the mostly used simple intramedullary pins, which show a complete lack of axial and rotational stability. The stability achieved by the intramedullary screw allows the analysis of endochondral healing. A large amount of callus tissue, received after stabilization with the screw, offers ideal conditions to harvest tissue for biochemical and molecular analyses. A further advantage of the use of the screw is the fact that the screw can be inserted into the femur with a minimally invasive technique without inducing damage to the soft tissue. In conclusion, the screw is a unique implant that can ideally be used in closed fracture healing models offering standardized biomechanical conditions.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University;
| | - Philipp Bremer
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Mika F Rollmann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Steven Herath
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University
| | - Tobias Fritz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| |
Collapse
|
18
|
Histing T, Menger MD, Pohlemann T, Matthys R, Fritz T, Garcia P, Klein M. An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice. J Vis Exp 2016. [PMID: 27911364 DOI: 10.3791/54472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone healing models are essential to the development of new therapeutic strategies for clinical fracture treatment. Furthermore, mouse models are becoming more commonly used in trauma research. They offer a large number of mutant strains and antibodies for the analysis of the molecular mechanisms behind the highly differentiated process of bone healing. To control the biomechanical environment, standardized and well-characterized osteosynthesis techniques are mandatory in mice. Here, we report on the design and use of an intramedullary nail to stabilize open femur osteotomies in mice. The nail, made of medical-grade stainless steel, provides high axial and rotational stiffness. The implant further allows the creation of defined, constant osteotomy gap sizes from 0.00 mm to 2.00 mm. Intramedullary locking nail stabilization of femur osteotomies with gap sizes of 0.00 mm and 0.25 mm result in adequate bone healing through endochondral and intramembranous ossification. Stabilization of femur osteotomies with a gap size of 2.00 mm results in atrophic non-union. Thus, the intramedullary locking nail can be used in healing and non-healing models. A further advantage of the use of the nail compared to other open bone healing models is the possibility to adequately fix bone substitutes and scaffolds in order to study the process of osseous integration. A disadvantage of the use of the intramedullary nail is the more invasive surgical procedure, inherent to all open procedures compared to closed models. A further disadvantage may be the induction of some damage to the intramedullary cavity, inherent to all intramedullary stabilization techniques compared to extramedullary stabilization procedures.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University;
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | | | - Tobias Fritz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Patric Garcia
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| |
Collapse
|
19
|
Manassero M, Decambron A, Huu Thong BT, Viateau V, Bensidhoum M, Petite H. Establishment of a Segmental Femoral Critical-size Defect Model in Mice Stabilized by Plate Osteosynthesis. J Vis Exp 2016. [PMID: 27768070 PMCID: PMC5092194 DOI: 10.3791/52940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of tissue-engineered bone constructs is an appealing strategy to overcome drawbacks of autografts for the treatment of massive bone defects. As a model organism, the mouse has already been widely used in bone-related research. Large diaphyseal bone defect models in mice, however, are sparse and often use bone fixation which fills the bone marrow cavity and does not provide optimal mechanical stability. The objectives of the current study were to develop a critical-size, segmental, femoral defect in nude mice. A 3.5-mm mid-diaphyseal femoral ostectomy (approximately 25% of the femur length) was performed using a dedicated jig, and was stabilized with an anterior located locking plate and 4 locking screws. The bone defect was subsequently either left empty or filled with a bone substitute (syngenic bone graft or coralline scaffold). Bone healing was monitored noninvasively using radiography and in vivo micro-computed-tomography and was subsequently assessed by ex vivo micro-computed-tomography and undecalcified histology after animal sacrifice, 10 weeks postoperatively. The recovery of all mice was excellent, a full-weight-bearing was observed within one day following the surgical procedure. Furthermore, stable bone fixation and consistent fixation of the implanted materials were achieved in all animals tested throughout the study. When the bone defects were left empty, non-union was consistently obtained. In contrast, when the bone defects were filled with syngenic bone grafts, bone union was always observed. When the bone defects were filled with coralline scaffolds, newly-formed bone was observed in the interface between bone resection edges and the scaffold, as well as within a short distance within the scaffold. The present model describes a reproducible critical-size femoral defect stabilized by plate osteosynthesis with low morbidity in mice. The new load-bearing segmental bone defect model could be useful for studying the underlying mechanisms in bone regeneration pertinent to orthopaedic applications.
Collapse
Affiliation(s)
- Mathieu Manassero
- Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaires (B2OA - UMR CNRS 7052), Université Paris Diderot; Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est
| | - Adeline Decambron
- Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaires (B2OA - UMR CNRS 7052), Université Paris Diderot; Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est
| | - Bui Truong Huu Thong
- Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaires (B2OA - UMR CNRS 7052), Université Paris Diderot
| | - Véronique Viateau
- Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaires (B2OA - UMR CNRS 7052), Université Paris Diderot; Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est
| | - Morad Bensidhoum
- Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaires (B2OA - UMR CNRS 7052), Université Paris Diderot
| | - Hervé Petite
- Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaires (B2OA - UMR CNRS 7052), Université Paris Diderot;
| |
Collapse
|
20
|
Haffner-Luntzer M, Kovtun A, Rapp AE, Ignatius A. Mouse Models in Bone Fracture Healing Research. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0037-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Histing T, Heerschop K, Klein M, Scheuer C, Stenger D, Holstein JH, Pohlemann T, Menger MD. Characterization of the healing process in non-stabilized and stabilized femur fractures in mice. Arch Orthop Trauma Surg 2016; 136:203-11. [PMID: 26602903 DOI: 10.1007/s00402-015-2367-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 02/09/2023]
Abstract
BACKGROUND Although a variety of suitable fracture models for mice exist, in many studies bone healing was still analyzed without fracture stabilization. Because there is little information whether the healing of non-stabilized fractures differs from that of stabilized fractures, we herein studied the healing process of non-stabilized compared to stabilized femur fractures. MATERIALS AND METHODS Twenty-one CD-1 mice were stabilized after midshaft fracture of the femur with an intramedullary screw allowing micromovements and endochondral healing. In another 22 mice the femur fractures were left unstabilized. Bone healing was studied by radiological, biomechanical, histomorphometric and protein expression analyses. RESULTS Non-stabilized femur fractures revealed a significantly lower biomechanical stiffness compared to stabilized fractures. During the early phase of fracture healing non-stabilized fractures demonstrated a significantly lower amount of osseous tissue and a higher amount of cartilage tissue. During the late phase of fracture healing both non-stabilized and stabilized fractures showed almost 100 % osseous callus tissue. However, in stabilized fractures remodeling was almost completed with lamellar bone while non-stabilized fractures still showed large callus with great amounts of woven bone, indicating a delay in bone remodeling. Of interest, western blot analyses of callus tissue demonstrated in non-stabilized fractures a significantly reduced expression of vascular endothelial growth factor and a slightly lowered expression of bone morphogenetic protein-2 and collagen-10. CONCLUSION Non-stabilized femur fractures in mice show a marked delay in bone healing compared to stabilized fractures. Therefore, non-stabilized fracture models may not be used to analyze the mechanisms of normal bone healing.
Collapse
Affiliation(s)
- T Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - K Heerschop
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - M Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - C Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - D Stenger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - J H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - T Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| |
Collapse
|
22
|
Viateau V, Decambron A, Manassero M. Animal Models for Orthopedic Applications of Tissue Engineering. Biomaterials 2014. [DOI: 10.1002/9781119043553.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Liu K, Li D, Huang X, Lv K, Ongodia D, Zhu L, Zhou L, Li Z. A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system. J Surg Res 2013; 183:493-502. [PMID: 23522461 DOI: 10.1016/j.jss.2013.02.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND As a model animal, the mouse has already been widely used in bone-related research. However, there is a lack of ideal long bone segmental defect mouse model. Since external fixation has disadvantages of heavy weight, penetrating the skin, and hampering mobility, an internal fixation device is probably more preferable to maintain the segmental bone defect. The aim of this study was to establish a simple, reproducible, and standardized murine critical-size defect model through designing an internal fixation system, verifying its adaptability, and investigating the critical size of femoral segmental defect. METHODS By utilizing computer-aided measuring and processing system, anatomical data of adult C57BL/6 mouse femur was obtained, and a plate-bolts system was designed for rigid fixation. The plate and screws were fixed in 67 mice and 1.5 or 2.0 mm defect gaps were created in the femoral midshaft. Compression and three-point bending of bone-implant construct were tested in mice at 0, 2, 5, and 12 wk postoperative to test the biomechanical stability. X-ray, micro-computed tomography, and histology were used to investigate the defect healing process. RESULTS The plate- and screws-fitted mouse femur and unilateral or bilateral operation had seemingly no adverse impact on the mouse in general. Mechanical tests indicated that there were no significant differences between the bone-implant construct and intact femur in compression and three-point bending loading. Micro-computed tomography scanning showed the bone mineral density had not been affected by the implantation of fixation device. There was no union of the 2.0 mm segmental defect in 12-wk period. CONCLUSION Using the specifically designed rigid internal fixation device, a segmental defect size of 2.0 mm in C57BL/6 mouse femur will show nonunion and can serve as a critical defect size for bone tissue engineering and bone regeneration research.
Collapse
Affiliation(s)
- Kai Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Recknagel S, Bindl R, Wehner T, Göckelmann M, Wehrle E, Gebhard F, Huber-Lang M, Claes L, Ignatius A. Conversion from external fixator to intramedullary nail causes a second hit and impairs fracture healing in a severe trauma model. J Orthop Res 2013; 31:465-71. [PMID: 23070742 DOI: 10.1002/jor.22242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/13/2012] [Indexed: 02/04/2023]
Abstract
In poly-traumatic patients, second hits are known to potentiate the posttraumatic systemic inflammatory response, thus increasing the risk of multi-organ dysfunction. In accordance with "damage control orthopaedic surgery" principles, fractures are initially treated with external fixators, which are replaced by internal osteosynthesis once the immunological status of the patient is considered stable. Recently, we demonstrated that a severe trauma impaired the healing of fractures stabilized by external fixation during the entire healing period. The question arose, whether switching to intramedullary nailing increases the inflammatory response in terms of a second hit, leading to a further impairment of bone healing. Wistar rats received a femoral osteotomy stabilized by an external fixator. Simultaneously half of the rats underwent an additional thoracic trauma. After 4 days, the external fixator was replaced by an intramedullary nail in half of the rats of the two groups. The inflammatory response was evaluated by measuring serum C5a levels. Fracture healing was determined by three-point-bending, µCT, and histomorphometry. The thoracic trauma significantly increased C5a concentrations 6, 24, and 72 h after the second surgical intervention. After 40 days, conversion to intramedullary nailing considerably decreased the flexural rigidity of the callus, with no significant differences between rats with or without thoracic trauma. After 47 days, flexural rigidity in rats subjected to conversion remained decreased compared to animals solely treated by external fixation, particularly in combination with blunt chest trauma. The results indicate that accumulation of second hits after multiple injuries could lead to aggravation of the fracture healing outcome.
Collapse
Affiliation(s)
- Stefan Recknagel
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Montijo HE, Kellam JF, Gettys FK, Starman JS, Nelson MAJKJ, Bayoumi EM, Bosse MJ, Gruber HE. Utilization of the AO LockingRatNail in a Novel Rat Femur Critical Defect Model. J INVEST SURG 2012; 25:381-6. [DOI: 10.3109/08941939.2012.655370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Manassero M, Viateau V, Matthys R, Deschepper M, Vallefuoco R, Bensidhoum M, Petite H. A novel murine femoral segmental critical-sized defect model stabilized by plate osteosynthesis for bone tissue engineering purposes. Tissue Eng Part C Methods 2012; 19:271-80. [PMID: 22953787 DOI: 10.1089/ten.tec.2012.0256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mouse models are invaluable tools for mechanistic and efficacy studies of the healing process of large bone defects resulting in atrophic nonunions, a severe medical problem and a financial health-care-related burden. Models of atrophic nonunions are usually achieved by providing a highly stable biomechanical environment. For this purpose, external fixators have been investigated, but plate osteosynthesis, despite its high clinical relevance, has not yet been considered in mice. We hereby proposed and investigated the use of an internal osteosynthesis for stabilizing large bone defects. To this aim, a 3.5-mm-long segmental bone defect was induced in the mid-shaft of the femur using a Gigli saw and a jig. Bone fixation was performed using a titanium microlocking plate with four locking screws. The bone defect was either left empty or filled with a syngenic bone graft or filled with a coralline scaffold. Healing was monitored using radiographs. The healing process was further assessed using microcomputed tomography and histology 10 weeks after surgery. With the exception of one mouse that died during the surgical procedure, no complications were observed. A stable and reproducible bone fixation as well as a reproducible fixation of the implanted materials with full weight bearing was obtained in all animals tested. Nonunion was consistently observed in the group in which the defects were left empty. Bone union was obtained with the syngenic bone grafts, providing evidence that, although such defects were of critical size, bone healing was possible when the gold-standard material was used to fill the defect. Although new bone formation was greater in the coralline scaffold group than in the left-empty animal group, it remained limited and localized close to the bony edges, a consequence of the critical size of such bone defect. Our study established a reproducible, clinically relevant, femoral, atrophic nonunion, critical-sized defect, low morbidity mouse model. The present study was successful in designing and testing in a small animal model, a novel surgical method for the assessment of bone repair; this model has the potential to facilitate investigations of the molecular and cellular events involved in bone regeneration in load-bearing, segmental-bone defects.
Collapse
Affiliation(s)
- Mathieu Manassero
- Laboratory of Bioengineering and Biomechanics for Bone Articulation (B2OA–UMR CNRS 7052), University Paris-Diderot, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Yu YY, Bahney C, Hu D, Marcucio RS, Miclau T. Creating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects. J Vis Exp 2012:3552. [PMID: 22525683 DOI: 10.3791/3552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the fracture bone ends, and this cartilage is gradually replaced by bone through recapitulation of the developmental process of endochondral ossification. In contrast, if a bone fracture is rigidly stabilized bone forms directly via intramembranous ossification. Clinically, both endochondral and intramembranous ossification occur simultaneously. To effectively replicate this process investigators insert a pin into the medullary canal of the fractured bone as described by Bonnarens. This experimental method provides excellent lateral stability while allowing rotational instability to persist. However, our understanding of the mechanisms that regulate these two distinct processes can also be enhanced by experimentally isolating each of these processes. We have developed a stabilization protocol that provides rotational and lateral stabilization. In this model, intramembranous ossification is the only mode of healing that is observed, and healing parameters can be compared among different strains of genetically modified mice, after application of bioactive molecules, after altering physiological parameters of healing, after modifying the amount or time of stabilization, after distraction osteogenesis, after creation of a non-union, or after creation of a critical sized defect. Here, we illustrate how to apply the modified Ilizarov fixators for studying tibial fracture healing and distraction osteogenesis in mice.
Collapse
Affiliation(s)
- Yan-yiu Yu
- Department of Orthopaedic Surgery, University of California-San Francisco, CA, USA
| | | | | | | | | |
Collapse
|