1
|
An Algorithmic Immunohistochemical Approach to Define Tumor Type and Assign Site of Origin. Adv Anat Pathol 2020; 27:114-163. [PMID: 32205473 DOI: 10.1097/pap.0000000000000256] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunohistochemistry represents an indispensable complement to an epidemiology and morphology-driven approach to tumor diagnosis and site of origin assignment. This review reflects the state of my current practice, based on 15-years' experience in Pathology and a deep-dive into the literature, always striving to be better equipped to answer the age old questions, "What is it, and where is it from?" The tables and figures in this manuscript are the ones I "pull up on the computer" when I am teaching at the microscope and turn to myself when I am (frequently) stuck. This field is so exciting because I firmly believe that, through the application of next-generation immunohistochemistry, we can provide better answers than ever before. Specific topics covered in this review include (1) broad tumor classification and associated screening markers; (2) the role of cancer epidemiology in determining pretest probability; (3) broad-spectrum epithelial markers; (4) noncanonical expression of broad tumor class screening markers; (5) a morphologic pattern-based approach to poorly to undifferentiated malignant neoplasms; (6) a morphologic and immunohistochemical approach to define 4 main carcinoma types; (7) CK7/CK20 coordinate expression; (8) added value of semiquantitative immunohistochemical stain assessment; algorithmic immunohistochemical approaches to (9) "garden variety" adenocarcinomas presenting in the liver, (10) large polygonal cell adenocarcinomas, (11) the distinction of primary surface ovarian epithelial tumors with mucinous features from metastasis, (12) tumors presenting at alternative anatomic sites, (13) squamous cell carcinoma versus urothelial carcinoma, and neuroendocrine neoplasms, including (14) the distinction of pheochromocytoma/paraganglioma from well-differentiated neuroendocrine tumor, site of origin assignment in (15) well-differentiated neuroendocrine tumor and (16) poorly differentiated neuroendocrine carcinoma, and (17) the distinction of well-differentiated neuroendocrine tumor G3 from poorly differentiated neuroendocrine carcinoma; it concludes with (18) a discussion of diagnostic considerations in the broad-spectrum keratin/CD45/S-100-"triple-negative" neoplasm.
Collapse
|
2
|
Yatabe Y, Dacic S, Borczuk AC, Warth A, Russell PA, Lantuejoul S, Beasley MB, Thunnissen E, Pelosi G, Rekhtman N, Bubendorf L, Mino-Kenudson M, Yoshida A, Geisinger KR, Noguchi M, Chirieac LR, Bolting J, Chung JH, Chou TY, Chen G, Poleri C, Lopez-Rios F, Papotti M, Sholl LM, Roden AC, Travis WD, Hirsch FR, Kerr KM, Tsao MS, Nicholson AG, Wistuba I, Moreira AL. Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. J Thorac Oncol 2019; 14:377-407. [PMID: 30572031 PMCID: PMC6422775 DOI: 10.1016/j.jtho.2018.12.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/04/2023]
Abstract
Since the 2015 WHO classification was introduced into clinical practice, immunohistochemistry (IHC) has figured prominently in lung cancer diagnosis. In addition to distinction of small cell versus non-small cell carcinoma, patients' treatment of choice is directly linked to histologic subtypes of non-small cell carcinoma, which pertains to IHC results, particularly for poorly differentiated tumors. The use of IHC has improved diagnostic accuracy in the classification of lung carcinoma, but the interpretation of IHC results remains challenging in some instances. Also, pathologists must be aware of many interpretation pitfalls, and the use of IHC should be efficient to spare the tissue for molecular testing. The International Association for the Study of Lung Cancer Pathology Committee received questions on practical application and interpretation of IHC in lung cancer diagnosis. After discussions in several International Association for the Study of Lung Cancer Pathology Committee meetings, the issues and caveats were summarized in terms of 11 key questions covering common and important diagnostic situations in a daily clinical practice with some relevant challenging queries. The questions cover topics such as the best IHC markers for distinguishing NSCLC subtypes, differences in thyroid transcription factor 1 clones, and the utility of IHC in diagnosing uncommon subtypes of lung cancer and distinguishing primary from metastatic tumors. This article provides answers and explanations for the key questions about the use of IHC in diagnosis of lung carcinoma, representing viewpoints of experts in thoracic pathology that should assist the community in the appropriate use of IHC in diagnostic pathology.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.
| | - Sanja Dacic
- Department of Pathology University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Arne Warth
- Institute of Pathology, Cytopathology, and Molecular Pathology MVZ UEGP Giessen, Wetzlar, Limburg, Germany
| | - Prudence A Russell
- Anatomical Pathology Department, St. Vincent's Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Sylvie Lantuejoul
- Department of Biopathology, Centre Léon Bérard, Grenoble Alpes University, Lyon, France
| | - Mary Beth Beasley
- Department of Pathology, Mount Sinai Medical Center, New York, New York
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan and IRCCS MultiMedica, Milan, Italy
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kim R Geisinger
- Department of Pathology, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Masayuki Noguchi
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Johan Bolting
- Department of Immunology Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jin-Haeng Chung
- Department of Pathology and Respiratory Center, Seoul National University Bundang Hospital, Seongnam city, Gyeonggi- do, Republic of Korea
| | - Teh-Ying Chou
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Republic of China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Claudia Poleri
- Office of Pathology Consultants, Buenos Aires, Argentina
| | - Fernando Lopez-Rios
- Laboratorio de Dianas Terapeuticas, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fred R Hirsch
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Keith M Kerr
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, Scotland, United Kingdom
| | - Ming-Sound Tsao
- Department of Pathology, University Health Network/Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield National Health Service Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, M. D. Anderson Cancer Center, Houston, Texas
| | - Andre L Moreira
- Department of Pathology, New York University Langone Health, New York, New York
| |
Collapse
|
3
|
Russell-Goldman E, Hornick JL, Qian X, Jo VY. NKX2.2 immunohistochemistry in the distinction of Ewing sarcoma from cytomorphologic mimics: Diagnostic utility and pitfalls. Cancer Cytopathol 2018; 126:942-949. [PMID: 30376220 DOI: 10.1002/cncy.22056] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ewing sarcoma (ES) is a round cell sarcoma that can be challenging to diagnose on cytologic material given its significant overlap with numerous mesenchymal, epithelial, and lymphoid cytomorphologic mimics. The objective of this study was to assess the utility of a novel marker, NKX2.2, in the diagnosis of ES in cytologic material and its ability to distinguish ES from its mimics. METHODS NKX2.2 immunohistochemistry was performed on cell blocks from 107 fine-needle aspirations, and nuclear expression was scored semiquantitatively for extent and intensity. The study cohort included ES (n = 10), well differentiated neuroendocrine tumor (n = 20), melanoma (n = 11), Merkel cell carcinoma (n = 10), small cell carcinoma (n = 10), alveolar rhabdomyosarcoma (n = 2), spindle cell/sclerosing rhabdomyosarcoma (n = 2), synovial sarcoma (n = 12), solitary fibrous tumor (n = 2), chronic lymphocytic leukemia (n = 10), lymphoblastic lymphoma (n = 11), adenoid cystic carcinoma (n = 6), and CIC-rearranged sarcoma (n = 1). RESULTS NKX2.2 had high sensitivity (100%) and moderate specificity (85%) for the diagnosis of ES in cytologic material. NKX2.2 expression also was present in a subset of mesenchymal and epithelial mimics, and staining was most commonly observed in small cell carcinoma (80%) and well differentiated neuroendocrine tumor (45%). Among mesenchymal mimics, 42% exhibited NKX2.2 expression. NKX2.2 staining was absent in melanoma, adenoid cystic carcinoma, and lymphoproliferative neoplasms. CONCLUSIONS NKX2.2 is a highly sensitive but only moderately specific marker for ES. Neuroendocrine neoplasms exhibit variable NKX2.2 expression and remain a significant potential diagnostic pitfall. Thus, NKX2.2 expression should be interpreted in the context of an appropriate immunohistochemical panel (and often with confirmatory molecular testing) for the accurate diagnosis of ES.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xiaohua Qian
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Yang MX, Coates RF, Ambaye A, Cortright V, Mitchell JM, Buskey AM, Zubarik R, Liu JG, Ades S, Barry MM. NKX2.2, PDX-1 and CDX-2 as potential biomarkers to differentiate well-differentiated neuroendocrine tumors. Biomark Res 2018; 6:15. [PMID: 29713473 PMCID: PMC5907358 DOI: 10.1186/s40364-018-0129-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Well-differentiated neuroendocrine tumors (NET) most frequently arise from the gastrointestinal tract (GI), pancreas, and lung. Patients often present as metastasis with an unknown primary, and the clinical management and outcome depend on multiple factors, including the accurate diagnosis with the tumor primary site. Determining the site of the NET with unknown primary remains challenging. Many biomarkers have been investigated in primary NETs and metastatic NETs, with heterogeneous sensitivity and specificity observed. Methods We used high-throughput tissue microarray (TMA) and immunohistochemistry (IHC) with antibodies against a panel of transcriptional factors including NKX2.2, PDX-1, PTF1A, and CDX-2 on archived formalin-fixed paraffin-embedded NETs, and investigated the protein expression pattern of these transcription factors in 109 primary GI (N = 81), pancreatic (N = 17), and lung (N = 11) NETs. Results Differential expression pattern of these markers was observed. In the GI and pancreatic NETs (N = 98), NKX2.2, PDX-1, and CDX-2 were immunoreactive in 82 (84%), 14 (14%), and 52 (52%) cases, respectively. PDX-1 was expressed mainly in the small intestinal and appendiceal NETs, occasionally in the pancreatic NETs, and not in the colorectal NETs. All three biomarkers including NKX2.2, PDX-1, and CDX-2 were completely negative in lung NETs. PTF1A was expressed in all normal and neuroendocrine tumor cells. Conclusions Our findings suggest that NKX2.2 was a sensitive and specific biomarker for the GI and pancreatic neuroendocrine tumors. We proposed that a panel of immunostains including NKX2.2, PDX-1, and CDX-2 may show diagnostic utility for the most common NETs.
Collapse
Affiliation(s)
- Michelle X Yang
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Ryan F Coates
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Abiy Ambaye
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Valerie Cortright
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Jeannette M Mitchell
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Alexa M Buskey
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Richard Zubarik
- 2Gastroenterology, University of Vermont Medical Center, Burlington, VT USA
| | - James G Liu
- Applied Pathology Systems, Worcester, MA USA
| | - Steven Ades
- 4Medical Oncology, University of Vermont Medical Center, Burlington, VT USA
| | - Maura M Barry
- 4Medical Oncology, University of Vermont Medical Center, Burlington, VT USA
| |
Collapse
|
5
|
Kidd M, Modlin IM, Drozdov I, Aslanian H, Bodei L, Matar S, Chung KM. A liquid biopsy for bronchopulmonary/lung carcinoid diagnosis. Oncotarget 2017; 9:7182-7196. [PMID: 29467960 PMCID: PMC5805546 DOI: 10.18632/oncotarget.23820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/15/2017] [Indexed: 01/31/2023] Open
Abstract
No effective blood biomarker exists to detect and clinically manage bronchopulmonary (BP) neuroendocrine tumors (NET). We developed a blood-based 51 NET-specific transcript set for diagnosis and monitoring and evaluated clinical performance metrics. It accurately diagnosed the tumor and differentiated stable from progressive disease as determined by RECIST criteria. Gene expression was evaluated in: a) publicly available BPNET transcriptomes (GSE35679); b) two BPNET cell-lines; and c) BPNET tissue with paired blood (n = 7). Blood gene expression was assessed in 194 samples including controls, benign lung diseases, malignant lung diseases and small bowel NETs. A separate validation study in 25 age- and gender-matched BPNETs/controls was performed. Gene expression measured by real-time PCR was scored (0–100%; normal: < 14%). Regression analyses, Principal Component Analysis (PCA), hierarchical clustering, Fisher's and non-parametric evaluations were undertaken. All 51 genes were identified in BPNET transcriptomes, tumor samples and cell-lines. Significant correlations were evident between paired tumor and blood (R2:0.63–0.91, p < 0.001). PCA and hierarchical clustering identified blood gene expression was significantly different between lung cancers and benign diseases, including BPNETs. Gene expression was highly correlated (R2: 0.91, p = 1.7 × 10-15) between small bowel and BPNET. For validation, all 25 BPNETs were positive compared to 20% controls (p < 0.0001). Scores were significantly elevated (p < 0.0001) in BPNETs (57 ± 28%) compared to controls (4 ± 5%). BPNETs with progressive disease (85 ± 11%) exhibited higher scores than stable disease (32 ± 7%, p < 0.0001). Blood measurements accurately diagnosed bronchopulmonary carcinoids, distinguishing stable from progressive disease. This marker panel will have clinical utility as a diagnostic liquid biopsy able to define disease activity and progression in real-time.
Collapse
Affiliation(s)
- Mark Kidd
- Wren Laboratories, Brandford, CT, USA
| | | | | | | | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|