1
|
Duarte TL, Viveiros N, Godinho C, Duarte D. Heme (dys)homeostasis and liver disease. Front Physiol 2024; 15:1436897. [PMID: 39135705 PMCID: PMC11317413 DOI: 10.3389/fphys.2024.1436897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Heme is essential for a variety of proteins involved in vital physiological functions in the body, such as oxygen transport, drug metabolism, biosynthesis of steroids, signal transduction, antioxidant defense and mitochondrial respiration. However, free heme is potentially cytotoxic due to the capacity of heme iron to promote the oxidation of cellular molecules. The liver plays a central role in heme metabolism by significantly contributing to heme synthesis, heme detoxification, and recycling of heme iron. Conversely, enzymatic defects in the heme biosynthetic pathway originate multisystemic diseases (porphyrias) that are highly associated with liver damage. In addition, there is growing evidence that heme contributes to the outcomes of inflammatory, metabolic and malignant liver diseases. In this review, we summarize the contribution of the liver to heme metabolism and the association of heme dyshomeostasis with liver disease.
Collapse
Affiliation(s)
- Tiago L. Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nicole Viveiros
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Catarina Godinho
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Delfim Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Serviço de Hematologia e Transplantação da Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
2
|
Li J, Jiang X, Li C, Che H, Ling L, Wei Z. Proteomic alteration of endometrial tissues during secretion in polycystic ovary syndrome may affect endometrial receptivity. Clin Proteomics 2022; 19:19. [PMID: 35643455 PMCID: PMC9145147 DOI: 10.1186/s12014-022-09353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractEmbryo implantation is a complex developmental process that requires coordinated interactions among the embryo, endometrium, and the microenvironment of endometrium factors. Even though the impaired endometrial receptivity of patients with polycystic ovary syndrome (PCOS) is known, understanding of endometrial receptivity is limited. A proteomics study in three patients with PCOS and 3 fertile women was performed to understand the impaired endometrial receptivity in patients with PCOS during luteal phases. Through isobaric tags for relative and absolute quantitation (iTRAQ) analyses, we identified 232 unique proteins involved in the metabolism, inflammation, and cell adhesion molecules. Finally, our results suggested that energy metabolism can affect embryo implantation, whereas inflammation and cell adhesion molecules can affect both endometrial conversion and receptivity. Our results showed that endometrial receptive damage in patients with PCOS is not a single factor. It is caused by many proteins, pathways, systems, and abnormalities, which interact with each other and make endometrial receptive research more difficult.
Collapse
|
3
|
Puentes-Pardo JD, Moreno-SanJuan S, Carazo Á, León J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants (Basel) 2020; 9:antiox9121214. [PMID: 33276470 PMCID: PMC7760122 DOI: 10.3390/antiox9121214] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Heme oxygenase 1 (HO-1) is the rate-limiting enzyme of heme oxidative degradation, generating carbon monoxide (CO), free iron, and biliverdin. HO-1, a stress inducible enzyme, is considered as an anti-oxidative and cytoprotective agent. As many studies suggest, HO-1 is highly expressed in the gastrointestinal tract where it is involved in the response to inflammatory processes, which may lead to several diseases such as pancreatitis, diabetes, fatty liver disease, inflammatory bowel disease, and cancer. In this review, we highlight the pivotal role of HO-1 and its downstream effectors in the development of disorders and their beneficial effects on the maintenance of the gastrointestinal tract health. We also examine clinical trials involving the therapeutic targets derived from HO-1 system for the most common diseases of the digestive system.
Collapse
Affiliation(s)
- Jose D. Puentes-Pardo
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| | - Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Ángel Carazo
- Genomic Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Josefa León
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, 18016 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| |
Collapse
|
4
|
Chen F, Zhang YM, Wang JT, Wang J, Cui ZL, Liu ZR. Pre-treatment with FK506 reduces hepatic ischemia-reperfusion injury in rats. Clin Res Hepatol Gastroenterol 2019; 43:161-170. [PMID: 30713033 DOI: 10.1016/j.clinre.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 02/04/2023]
Abstract
AIM The study is aimed to investigate the protective effects and possible mechanism of tacrolimus (FK506) pre-treatment in hepatic ischemia-reperfusion injury in rats. METHODS The rats were randomly assigned into four groups, which were S, IR, L and H group, and then all groups were subjected to 60min of 70% partial warm liver ischemia, except S group. Rats in the L and H group were pre-treated with two different doses FK506 at 60min before ischemia. The rats of the IR group received an identical volume of normal saline. All animals were sacrificed after 6h of reperfusion. Transaminases were measured by biochemistry analyzer. Elisa kit was used to detect TNF-α, IL-6 and IL-1β levels in serum. Liver specimens were stained with hematoxylin and eosin (HE) to assess the pathologic changes. The expressions of heme oxygenase-1 (HO-1), hypoxia-inducible factor-1α (HIF-1α), nuclear factor of activated T cells (NFAT3) were measured by real-time quantitative PCR and western blotting and the Bcl-2 and the Bax protein were tested by western blotting. RESULTS In rats pre-treated with FK506, the levels of transaminases, TNF-α and IL-1β were reduced significantly and also liver damage was dramatically mitigated compared to those without FK506 pre-treatment. Moreover, the expression of HO-1 at the level of both transcription and translation increased clearly and the activation of the HIF-1α was found in FK506 pre-treated livers. Moreover, NFAT3 protein transportation to the nucleus was reduced and Bax protein expression was decreased, but the expression of Bcl-2 protein was markedly increased after FK506 pre-treatment. CONCLUSION FK506 pre-treatment could lessen hepatic ischemia-reperfusion injury through up-regulating the expression of HIF-1α and HO-1, and inhibiting nuclear translocation of NFAT3 in liver tissues.
Collapse
Affiliation(s)
- Feng Chen
- Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, 261001 Shandong, China
| | - Ya-Min Zhang
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China.
| | - Jing-Tao Wang
- Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, 261001 Shandong, China
| | - Jian Wang
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China
| | - Zi-Lin Cui
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China
| | - Zi-Rong Liu
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China
| |
Collapse
|
5
|
Qu S, Yuan B, Zhang H, Huang H, Zeng Z, Yang S, Ling J, Jin L, Wu P. Heme Oxygenase 1 Attenuates Hypoxia-Reoxygenation Injury in Mice Liver Sinusoidal Endothelial Cells. Transplantation 2018; 102:426-432. [PMID: 29189483 DOI: 10.1097/tp.0000000000002028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Heme oxygenase 1 (HO-1), a heat shock protein, can be involved in the resolution of inflammation by modulating cytokine expression and apoptotic cell death. Based on recent evidence that liver sinusoidal endothelial cells (LSECs) is the critical target in early period of liver ischemia-reperfusion injury (IRI), this study aims to clarify whether overexpression of HO-1 gene provides a protective effect on mice LSECs. METHODS LSECs were transfected with adenovirus vectors encoding mice HO-1 gene (Ad-HO-1) or green fluorescent protein. Controls were not infected with any vector. LSECs were then treated with hypoxic or normoxic culture. We used low serum culture medium and hypoxia-reoxygenation (H-R) conditions to cause IRI in vitro. The transfection efficiency of HO-1 gene in LSECs, after 48 hours of transfection, and the effect of HO-1 on the model of H-R injury in LSECs were observed. RESULTS Transfection of LSECs with Ad-HO-1 was at an optimal dose (multiplicity of infection = 80) to markedly express HO-1 mRNA and protein. Groups of overexpressed HO-1 showed lower levels of inflammatory factor mediators IL-6 and TNF-α. Survival rate of the cells after H-R injury was higher and attributed to overexpressed HO-1. In contrast, the control adenovirus expressing the enhanced green fluorescent protein failed to induce HO-1 expression and stimulated cell apoptosis. HO-1 expression was downregulated in all H-R groups compared with normoxia groups, which may be related to the disruption of the LSEC structure. CONCLUSIONS Upregulation of HO-1 can attenuate H-R injury in LSECs by inhibiting proinflammatory cytokine release and diminishing apoptotic cell death.
Collapse
Affiliation(s)
- Siming Qu
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Bo Yuan
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongbin Zhang
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hanfei Huang
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhong Zeng
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Shikun Yang
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jie Ling
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Jin
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Pu Wu
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
6
|
Mills EA, Ogrodnik MA, Plave A, Mao-Draayer Y. Emerging Understanding of the Mechanism of Action for Dimethyl Fumarate in the Treatment of Multiple Sclerosis. Front Neurol 2018; 9:5. [PMID: 29410647 PMCID: PMC5787128 DOI: 10.3389/fneur.2018.00005] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
Dimethyl fumarate (DMF) is an effective treatment option for relapsing-remitting multiple sclerosis (MS), but its therapeutic mechanism of action has not been fully elucidated. A better understanding of its mechanism will allow for the development of assays to monitor its clinical efficacy and safety in patients, as well as guide the development of the next generation of therapies for MS. In order to build the foundation for determining its mechanism, we reviewed the manner in which DMF alters lymphocyte subsets in MS patients, its impact on clinical efficacy and safety, as well as its molecular effects in cellular and animal models. DMF decreases absolute lymphocyte counts, but does not affect all subsets uniformly. CD8+ T-cells are the most profoundly affected, but reduction also occurs in the CD4+ population, particularly within the pro-inflammatory T-helper Th1 and Th17 subsets, creating a bias toward more anti-inflammatory Th2 and regulatory subsets. Similarly, B-lymphocyte, myeloid, and natural killer populations are also shifted toward a more anti-inflammatory state. In vitro and animal models demonstrate a role for DMF within the central nervous system (CNS) in promoting neuronal survival in an Nrf2 pathway-dependent manner. However, the impact of DMF directly within the CNS of MS patients remains largely unknown.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Magdalena A Ogrodnik
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrew Plave
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
8
|
Espinoza JA, González PA, Kalergis AM. Modulation of Antiviral Immunity by Heme Oxygenase-1. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:487-493. [PMID: 28082120 DOI: 10.1016/j.ajpath.2016.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/05/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
Abstract
Heme oxygenase-1 (HO-1) is a stress-inducible, anti-inflammatory, and cytoprotective enzyme expressed in most cell types in the organism. Under several stress stimuli, HO-1 expression and activity is up-regulated to catalyze the rate-limiting enzymatic step of heme degradation into carbon monoxide, free iron, and biliverdin. Besides its effects on cell metabolism, HO-1 is also capable of modulating host innate and adaptive immune responses in response to sepsis, transplantation, and autoimmunity, and preventing oxidative damage associated with inflammation. In addition, recent studies have reported that HO-1 can exert a significant antiviral activity against a wide variety of viruses, including HIV, hepatitis C virus, hepatitis B virus, enterovirus 71, influenza virus, respiratory syncytial virus, dengue virus, and Ebola virus, among others. Herein, we address the current understanding of the functional significance of HO-1 against a variety of viruses and its potential as a therapeutic strategy to prevent and control viral infections. Furthermore, we review the most important features of the immunoregulatory functions for this enzyme.
Collapse
Affiliation(s)
- Janyra A Espinoza
- Department of Molecular Genetics and Microbiology, Millennium Institute on Immunology and Immunotherapy, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Department of Molecular Genetics and Microbiology, Millennium Institute on Immunology and Immunotherapy, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Department of Molecular Genetics and Microbiology, Millennium Institute on Immunology and Immunotherapy, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, Combined Research Unit 1064, Nantes University Hospital Nantes, Institute for Transplantation-Urology-Nephrology, Université de Nantes, Faculty of Medicine, Nantes, France; Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Lundy SK, Wu Q, Wang Q, Dowling CA, Taitano SH, Mao G, Mao-Draayer Y. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e211. [PMID: 27006972 PMCID: PMC4784801 DOI: 10.1212/nxi.0000000000000211] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/22/2015] [Indexed: 12/04/2022]
Abstract
Objective: To test the hypothesis that dimethyl fumarate (Tecfidera, BG-12) affects B-cell subsets in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: Peripheral blood B cells were compared for surface marker expression in patients with RRMS prior to initiation of treatment, after 4–6 months, and at more than 1 year of treatment with BG-12. Production of interleukin (IL)–10 by RRMS patient B cells was also analyzed. Results: Total numbers of peripheral blood B lymphocytes declined after 4–6 months of BG-12 treatment, due to losses in both the CD27+ memory B cells and CD27neg B-cell subsets. Some interpatient variability was observed. In contrast, circulating CD24highCD38high (T2-MZP) B cells increased in percentage in the majority of patients with RRMS after 4–6 months and were present in higher numbers in all of the patients after 12 months of treatment. The CD43+CD27+ B-1 B cells also increased at the later time point in most patients but were unchanged at 4–6 months compared to pretreatment levels. Purified B cells from 7 of the 9 patients with RRMS tested after 4–6 months of treatment were able to produce IL-10 following CD40 ligand stimulation, and the amount corresponded with the combined levels of T2-MZP and B-1 B cells in the sample. None of the patients with RRMS in this study have had a relapse while taking BG-12. Conclusions: These data suggest that BG-12 differentially affects B-cell subsets in patients with RRMS, resulting in increased numbers of circulating B lymphocytes with regulatory capacity.
Collapse
Affiliation(s)
- Steven K Lundy
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Qi Wu
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Qin Wang
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Catherine A Dowling
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Sophina H Taitano
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Guangmei Mao
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Yang Mao-Draayer
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| |
Collapse
|
10
|
Sano N, Tamura T, Toriyabe N, Nowatari T, Nakayama K, Tanoi T, Murata S, Sakurai Y, Hyodo M, Fukunaga K, Harashima H, Ohkohchi N. New drug delivery system for liver sinusoidal endothelial cells for ischemia-reperfusion injury. World J Gastroenterol 2015; 21:12778-12786. [PMID: 26668502 PMCID: PMC4671033 DOI: 10.3748/wjg.v21.i45.12778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/22/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the cytoprotective effects in hepatic ischemia-reperfusion injury, we developed a new formulation of hyaluronic acid (HA) and sphingosine 1-phophate.
METHODS: We divided Sprague-Dawley rats into 4 groups: control, HA, sphingosine 1-phosphate (S1P), and HA-S1P. After the administration of each agent, we subjected the rat livers to total ischemia followed by reperfusion. After reperfusion, we performed the following investigations: alanine aminotransferase (ALT), histological findings, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining, and transmission electron microscopy (TEM). We also investigated the expression of proteins associated with apoptosis, hepatoprotection, and S1P accumulation.
RESULTS: S1P accumulated in the HA-S1P group livers more than S1P group livers. Serum ALT levels, TUNEL-positive hepatocytes, and expression of cleaved caspase-3 expression, were significantly decreased in the HA-S1P group. TEM revealed that the liver sinusoidal endothelial cell (LSEC) lining was preserved in the HA-S1P group. Moreover, the HA-S1P group showed a greater increase in the HO-1 protein levels compared to the S1P group.
CONCLUSION: Our results suggest that HA-S1P exhibits cytoprotective effects in the liver through the inhibition of LSEC apoptosis. HA-S1P is an effective agent for hepatic ischemia/reperfusion injury.
Collapse
|
11
|
Li J, Zhao X, Liu X, Liu H. Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells. Mol Immunol 2015; 66:117-25. [DOI: 10.1016/j.molimm.2015.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/30/2022]
|
12
|
Protective effect of wild ginseng cambial meristematic cells on d-galactosamine-induced hepatotoxicity in rats. J Ginseng Res 2015; 39:376-83. [PMID: 26869831 PMCID: PMC4593786 DOI: 10.1016/j.jgr.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023] Open
Abstract
Background Panax ginseng has a wide range of biological activities including anti-inflammatory, antioxidant, and immunomodulatory functions. Wild ginseng cambial meristematic cells (CMCs) were obtained from P. ginseng cambium. This study examined the protective mechanism of wild ginseng CMCs against d-galactosamine (GalN)-induced liver injury. GalN, a well-known hepatotoxicant, causes severe hepatocellular inflammatory damage and clinical features similar to those of human viral hepatitis in experimental animals. Methods Hepatotoxicity was induced in rats using GalN (700 mg/kg, i.p.). Wild ginseng CMCs was administered orally once a day for 2 wks, and then 2 h prior to and 6 h after GalN injection. Results Wild ginseng CMCs attenuated the increase in serum aminotransferase activity that occurs 24 h after GalN injection. Wild ginseng CMCs also attenuated the GalN-induced increase in serum tumor necrosis factor-α, interleukin-6 level, and hepatic cyclooxygenase-2 protein and mRNA expression. Wild ginseng CMCs augmented the increase in serum interleukin -10 and hepatic heme oxygenase-1 protein and mRNA expression that was induced by GalN, inhibited the increase in the nuclear level of nuclear factor-kappa B, and enhanced the increase in NF-E2-related factor 2. Conclusion Our findings suggest that wild ginseng CMCs protects liver against GalN-induced inflammation by suppressing proinflammatory mediators and enhancing production of anti-inflammatory mediators.
Collapse
|
13
|
Solhjou Z, Athar H, Xu Q, Abdi R. Emerging therapies targeting intra-organ inflammation in transplantation. Am J Transplant 2015; 15:305-11. [PMID: 25612486 DOI: 10.1111/ajt.13073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/16/2014] [Accepted: 10/12/2014] [Indexed: 01/25/2023]
Abstract
Over the past several years, the field of transplantation has witnessed significant progress on several fronts; in particular, achievements have been made in devising novel immunosuppressive strategies. An under-explored area that may hold great potential to improve transplantation outcomes is the design of novel strategies to apply specifically to organs to reduce intra-graft inflammation. A growing body of evidence indicates a key role of intra-graft inflammatory cascade in potently instigating the alloimmune response. Indeed, controlling the activation of innate immunity/inflammatory responses has been shown to be a promising strategy to increase the graft acceptance and survival. In this minireview, we provide an overview of emerging targeted strategies, which can be directly applied to grafts to down-regulate intra-graft inflammation prior to transplantation.
Collapse
Affiliation(s)
- Z Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
14
|
Schumacher A, Zenclussen AC. Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Front Pharmacol 2015; 5:288. [PMID: 25610397 PMCID: PMC4285018 DOI: 10.3389/fphar.2014.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 12/14/2022] Open
Abstract
The heme-degrading enzyme heme oxygenase-1 (HO-1) has cytoprotective, antioxidant, and anti-inflammatory properties. Moreover, HO-1 is reportedly involved in suppressing destructive immune responses associated with inflammation, autoimmune diseases, and allograft rejection. During pregnancy, maternal tolerance to foreign fetal antigens is a prerequisite for successful embryo implantation and fetal development. Here, HO-1 has been implicated in counteracting the overwhelming inflammatory immune responses towards fetal allo-antigens, thereby contributing to fetal acceptance. Accordingly, HO-1 ablation negatively impacts the critical steps of pregnancy such as fertilization, implantation, placentation, and fetal growth. In the present review, we summarize recent data on the immune modulatory capacity of HO-1 towards allo-antigens expressed by the semi-allogeneic fetus and organ allografts. In this regard, HO-1 has been shown to promote alloantigen tolerance by blocking dendritic cell maturation resulting in reduced T cell responses and increased numbers of regulatory T cells. Moreover, HO-1 is suggested to shift the uterine cytokine milieu towards a protective Th2 profile and protects fetal tissue from apoptosis by upregulating anti-apoptotic molecules. Thus, HO-1 is not only a pivotal regulator of the initial steps of pregnancy; but also, an important player in supporting the maternal immune system in tolerating the fetus.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Ana C Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
15
|
Zahir F, Rabbani G, Khan RH, Rizvi SJ, Jamal MS, Abuzenadah AM. The pharmacological features of bilirubin: the question of the century. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/cmble-2015-0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis review looks at the toxicity and metabolism of bilirubin in terms of its pharmacological potential. Its role has gained importance as more research has revealed the functional significance and interrelationship between the gasotransmitters nitric oxide and carbon monoxide. The biological actions of bilirubin have mostly been characterized in the high micromolar range where toxic effects occur. However, it could also prove to be an important cytoprotector for brain tissue, which is inherently less equipped for antioxidant defense. Plasma bilirubin levels negatively correlate to a number of disease states. Higher levels of bilirubin that are still within the normal range provide a protective effect to the body. The effects on various disorders could be tested using controlled pharmacological upregulation of the molecule with animal models. At nanomolar concentrations, considerable benefits have been obtained when the molecule was delivered pharmacologically under in vitro or in vivo test conditions, particularly in neurodegenerative disorders and after tissue or organ transplantation. The induction of heme oxygenase-1 (HMOX-1) via the activation of nuclear factor erythroid 2-related factor or the use of bile pigments in the harvesting of diseased tissue are novel applications, and like every new therapy, should be used with caution. HMOX-1 is tissue specific, and in exceptional states, such as schizophrenia and specific types of renal disorder, the same therapy may have disastrous effects.
Collapse
|
16
|
Origassa CST, Câmara NOS. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J Hepatol 2013; 5:541-9. [PMID: 24179613 PMCID: PMC3812456 DOI: 10.4254/wjh.v5.i10.541] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/08/2012] [Accepted: 11/25/2012] [Indexed: 02/06/2023] Open
Abstract
The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.
Collapse
Affiliation(s)
- Clarice Silvia Taemi Origassa
- Clarice Silvia Taemi Origassa, Laboratory of Experimental and Clinical Immunology, Nephrology Division, Medicine Department, Federal University of São Paulo, 04039-032 São Paulo, Brazil
| | | |
Collapse
|
17
|
Zhao Y, Zhang L, Qiao Y, Zhou X, Wu G, Wang L, Peng Y, Dong X, Huang H, Si L, Zhang X, Zhang L, Li J, Wang W, Zhou L, Gao X. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. PLoS One 2013; 8:e75927. [PMID: 24086665 PMCID: PMC3782439 DOI: 10.1371/journal.pone.0075927] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 08/22/2013] [Indexed: 12/29/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM). In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ)-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1) or mutant HO-1 (Tg-mutHO-1). The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV) function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt) and AMP-activated protein kinase (AMPK) phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry, Medical College of Qinghai University, Xining, Qinghai, China
| | - Lina Zhang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yu Qiao
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoling Zhou
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guodong Wu
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lujing Wang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yahui Peng
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingli Dong
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Huang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lining Si
- Department of Critical-Care Medicine, Affiliated Hospital of Medicine School of Qinghai University, Xining, Qinghai, China
| | - Xueying Zhang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jihong Li
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Wang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lingyun Zhou
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (LZ); (XG)
| | - Xu Gao
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (LZ); (XG)
| |
Collapse
|
18
|
Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J Transplant 2013; 2013:521369. [PMID: 23691272 PMCID: PMC3649190 DOI: 10.1155/2013/521369] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 01/26/2023] Open
Abstract
Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.
Collapse
|
19
|
Karimi K, Kandiah N, Chau J, Bienenstock J, Forsythe P. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells. PLoS One 2012; 7:e47556. [PMID: 23077634 PMCID: PMC3471882 DOI: 10.1371/journal.pone.0047556] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/18/2012] [Indexed: 02/07/2023] Open
Abstract
We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells.
Collapse
Affiliation(s)
- Khalil Karimi
- The Brain Body institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail: (PF); (KK)
| | - Nalaayini Kandiah
- The Brain Body institute, McMaster University, Hamilton, Ontario, Canada
| | - Jessie Chau
- The Brain Body institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John Bienenstock
- The Brain Body institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paul Forsythe
- The Brain Body institute, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail: (PF); (KK)
| |
Collapse
|
20
|
A technique of recipient portal venoplasty and cuff insertion for portal revascularization in orthotopic rat liver transplantation. J Surg Res 2011; 176:317-20. [PMID: 22172136 DOI: 10.1016/j.jss.2011.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/03/2011] [Accepted: 09/14/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to suprahepatic vena cava anastomosis in two-cuff rat liver transplantation, recipient portal vein revascularization is one of the most difficult procedures that must be performed, especially for beginners. MATERIALS AND METHODS A total of 43 cases of liver transplantation were performed. Rats in Group 1 and Group 2 were subjected to transplant procedures that used the conventional and portal venoplasty techniques, respectively. The portal vein anastomosis duration, anhepatic phase length, portal vein surgical complications, and 1 wk post-transplant survival rates were recorded for each group. RESULTS The portal revascularization duration was statistically significantly less for Group 2 versus Group 1 (1.50 ± 0.61 min and 4.32 ± 0.67 min, respectively, P < 0.05). The anhepatic phase length of Groups 1 and 2 were 21.79 ± 1.27 min and 18.55 ± 1.47 min, respectively (P < 0.05). No significant differences between the groups were observed in relation to either portal vein surgery complications or 1-week survival rates. CONCLUSIONS The recipient portal venoplasty and cuff insertion technique is a safe and fast alternative surgical option for portal revascularization in two-cuff rat liver transplantations performed by a single trainee.
Collapse
|