1
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
2
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
3
|
Klieser E, Neumayer B, Di Fazio P, Mayr C, Neureiter D, Kiesslich T. HDACs as an emerging target in endocrine tumors: a comprehensive review. Expert Rev Endocrinol Metab 2023; 18:143-154. [PMID: 36872882 DOI: 10.1080/17446651.2023.2183840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION The pathogenic role of deregulated histone (de-)acetylation by histone deacetyles (HDACs) has been demonstrated in several human cancers. While some HDAC inhibitors (HDACi) have been approved for individual entities, for endocrine tumors such translation into clinical practice has not yet been achieved. AREAS COVERED Relevant results identified by structured searches in PubMed as well as in reference lists are summarized in a narrative review to discuss the current knowledge of HDAC involvement and their therapeutic relevance in endocrine tumors. For thyroid, neuroendocrine, and adrenal tumors, various oncogenic mechanisms of HDAC deregulation and effects of HDAC inhibitors (HDACi) have been identified in preclinical studies including direct cancer cell toxicity and modification of differentiation status. EXPERT OPINION Based on positive pre-clinical results, the research on HDAC (inhibition) in the various endocrine tumors should be intensified - yet, it needs to be considered that i) HDACs' oncogenic actions might constitute only a part of epigenetic mechanisms driving cancer, ii) individual HDAC has different roles in different endocrine tumor entities, iii) inhibition of HDACs might be especially attractive in combination with conventional or other targeted therapies, and iv) new HDAC-inhibiting drugs with improved specificity or functionally modified HDACi might further improve their efficacy.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Bettina Neumayer
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| |
Collapse
|
4
|
Fu Y, Hao X, Shang P, Chamba Y, Zhang B, Zhang H. Functional Identification of Porcine DLK1 during Muscle Development. Animals (Basel) 2022; 12:ani12121523. [PMID: 35739860 PMCID: PMC9219491 DOI: 10.3390/ani12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Skeletal muscle is the largest tissue and serves as a protein reservoir and energy reservoir in the human and animal body. It also serves as the main metabolic activity site. The formation of skeletal muscle mainly depends on the differentiation and fusion of myocytes and other complex ordered processes; each step is regulated by various factors. In this study, we investigated the expression profiles, functional identification, and regulatory pathways of Delta-like 1 homolog (DLK1) in pigs and myocytes. We found that DLK1 was highly expressed in the muscle tissues of pigs. DLK1 promoted myocyte proliferation, migration, differentiation, fusion, and muscular hypertrophy, but suppressed muscle degradation. DLK1 also inhibited the Notch signaling pathway by regulating the expression of key factors in the pathway, thereby producing a phenotype in which DLK1 promotes muscle development. These findings provide valuable information to improve our understanding of the functional mechanisms of DLK1 that underly myogenesis to accelerate the process of animal genetic improvement. Abstract DLK1 is paternally expressed and is involved in metabolism switching, stem cell maintenance, cell proliferation, and differentiation. Porcine DLK1 was identified in our previous study as a candidate gene that regulates muscle development. In the present study, we characterized DLK1 expression in pigs, and the results showed that DLK1 was highly expressed in the muscles of pigs. In-vitro cellular tests showed that DLK1 promoted myoblast proliferation, migration, and muscular hypertrophy, and at the same time inhibited muscle degradation. The expression of myogenic and fusion markers and the formation of multinucleated myotubes were both upregulated in myoblasts with DLK1 overexpression. DLK1 levels in cultured myocytes were negatively correlated with the expression of key factors in the Notch pathway, suggesting that the suppression of Notch signaling pathways may mediate these processes. Collectively, our results suggest a biological function of DLK1 as an enhancer of muscle development by the inhibition of Notch pathways.
Collapse
Affiliation(s)
- Yu Fu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
| | - Xin Hao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Y.C.)
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Y.C.)
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
- Correspondence: (B.Z.); (H.Z.); Tel.: +86-010-62734852 (H.Z.)
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
- Correspondence: (B.Z.); (H.Z.); Tel.: +86-010-62734852 (H.Z.)
| |
Collapse
|
5
|
Liu D, Liu Y, Qi B, Gu C, Huo S, Zhao B. Trichostatin A promotes esophageal squamous cell carcinoma cell migration and EMT through BRD4/ERK1/2-dependent pathway. Cancer Med 2021; 10:5235-5245. [PMID: 34160902 PMCID: PMC8335841 DOI: 10.1002/cam4.4059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/09/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Histone deacetylases (HDACs) have been demonstrated to be aberrantly activated in tumorigenesis and cancer development. Thus, HDAC inhibitors (HDACIs) are considered to be promising anti‐cancer therapeutics. However, recent studies have shown that HDACIs promote the migration of many cancer cells. Therefore, there is a need to elucidate the underlying mechanisms of HDACIs on cancer cell migration to establish a combination therapy that overcomes HDACI‐induced cell migration. Methods KYSE‐150 and EC9706 cells were treated differently. Effects of drugs and siRNA treatment on tumor cell migration and cell signaling pathways were investigated by transwell migration assy. Gene expression for SNAI2 was tested by RT‐qPCR. Western blot analysis was employed to detect the level of E‐cadherin, β‐catenin, vimentin,Slug,ERK1/2, H3, PAI‐1 and BRD4. The effect of drugs on cell morphology was evaluated through phase‐contrast microscopic images. Results TSA promotes epithelial‐mesenchymal transition (EMT) in ESCC cells by downregulating the epithelial marker E‐cadherin and upregulating mesenchymal markers β‐catenin, vimentin, Slug, and PAI‐1. Knockdown of Slug by siRNA or inhibition of PAI‐1 clearly suppressed TSA‐induced ESCC cell migration and resulted in the reversal of TSA‐triggered E‐cadherin, β‐catenin, and vimentin expression. However, no crosstalk between Slug and PAI‐1 was observed in TSA‐treated ESCC cells. Blocking ERK1/2 activation also inhibited TSA‐induced ESCC cell migration, EMT, and upregulation of Slug and PAI‐1 levels in ESCC cells. Interestingly, inhibition of BRD4 suppressed TSA‐induced ESCC cell migration and attenuated TSA‐induced ERK1/2 activation and upregulation of Slug and PAI‐1 levels. Conclusions Our data indicate the existence of at least two separable ERK1/2‐dependent signaling pathways in TSA‐mediated ESCC cell migration: an ERK1/2–Slug branch and an ERK1/2‐PAI‐1 branch. Both branches of TSA‐induced ESCC cell migration appear to favor the EMT process, while BRD4 is responsible for two separable ERK1/2‐dependent signaling pathways in TSA‐mediated ESCC cell migration.
Collapse
Affiliation(s)
- Danhui Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China.,Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Bo Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Chengwei Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Shuhua Huo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| |
Collapse
|
6
|
Jin Q, Lin C, Zhu X, Cao Y, Guo C, Wang L. 125I seeds irradiation inhibits tumor growth and induces apoptosis by Ki-67, P21, survivin, livin and caspase-9 expression in lung carcinoma xenografts. Radiat Oncol 2020; 15:238. [PMID: 33059701 PMCID: PMC7559445 DOI: 10.1186/s13014-020-01682-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lung cancer is a fatal disease and a serious health problem worldwide. Patients are usually diagnosed at an advanced stage, and the effectiveness of chemotherapy for such patients is very limited. Iodine 125 seed (125I) irradiation can be used as an important adjuvant treatment for lung carcinoma. The purpose of this study was to examine the role of irradiation by 125I seeds in human lung cancer xenograft model and to determine the underlying mechanisms involved, with a focus on apoptosis. METHODS 40 mice with A549 lung adenocarcinoma xenografts were randomly divided into 4 groups: control group (n = 10), sham seed (0 mCi) implant group (n = 10), 125I seed (0.6 mCi) implant group (n = 10) and 125I seed (0.8 mCi) implant group (n = 10), respectively. The body weight and tumor volume, were recorded every 4 days until the end of the study. Apoptotic cells were checked by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and activities of caspase-3 and caspase-8 enzyme were tested. Expression of P21, survivin, livin, caspase-9 and proliferating cell nuclear antigen (Ki-67) was detected with immunohistochemical staining. RESULTS The results of TUNEL staining assays showed that 125I seed irradiation suppresses the growth of lung cancer xenografts in nude mice and induced apoptosis. The activity of caspase-3 and caspase-8 was significantly higher. The expression levels Ki67, survivin and livin were substantially downregulated, while P21 and caspase-9 protein expression were significantly increased following 125I seed irradiation. This study revealed that 125I seed irradiation could significantly change apoptosis-related protein in human lung cancer xenografts. CONCLUSIONS Overall, our study demonstrates that radiation exposure by 125I seeds could be a new treatment option for lung cancer.
Collapse
Affiliation(s)
- Qing Jin
- Department of Critical Care Medicine, The 903th Hospital of PLA Joint Logistics Support Force, Zhejiang Province, Hangzhou, 310013, China
| | - Cunzhi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Xinhong Zhu
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, 266071, Shandong Province, China
| | - Yiwei Cao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Caihong Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Lijun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
7
|
Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R. Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:2449-2493. [PMID: 30332940 DOI: 10.2174/0929867325666181016163110] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Histone Deacetylase (HDAC) inhibitors are a relatively new class of anti-cancer agents that play important roles in epigenetic or non-epigenetic regulation, inducing death, apoptosis, and cell cycle arrest in cancer cells. Recently, their use has been clinically validated in cancer patients resulting in the approval by the FDA of four HDAC inhibitors, vorinostat, romidepsin, belinostat and panobinostat, used for the treatment of cutaneous/peripheral T-cell lymphoma and multiple myeloma. Many more HDAC inhibitors are at different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. Also, clinical trials of several HDAC inhibitors for use as anti-cancer drugs (alone or in combination with other anti-cancer therapeutics) are ongoing. In the intensifying efforts to discover new, hopefully, more therapeutically efficacious HDAC inhibitors, molecular modelingbased rational drug design has played an important role. In this review, we summarize four major structural classes of HDAC inhibitors (hydroxamic acid derivatives, aminobenzamide, cyclic peptide and short-chain fatty acids) that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Diego R Perinelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
8
|
Sanaei M, Kavoosi F. Investigation of the Effect of Zebularine in Comparison to and in Combination with Trichostatin A on p21Cip1/Waf1/ Sdi1, p27Kip1, p57Kip2, DNA Methyltransferases and Histone Deacetylases in Colon Cancer LS 180 Cell Line. Asian Pac J Cancer Prev 2020; 21:1819-1828. [PMID: 32592383 PMCID: PMC7568903 DOI: 10.31557/apjcp.2020.21.6.1819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The heart of the cell cycle regulatory machine is a group of enzymes named cyclin-dependent kinases (Cdks). The active form of these enzymes includes a kinase and its partner, a cyclin. The regulation of cyclin-Cdk complexes is provided by Cdk inhibitors (CKIs) such as Cip/Kip family comprising p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2. The hypermethylation and deacetylation of Cip/Kip gene family seem to be frequent in numerous cancers. It has been indicated that increased expression of DNMTs and HDACs contributes to cancer induction. Previously, we reported the effect of DNA demethylating agents and histone deacetylase inhibitors on histone deacetylase 1, DNA methyltransferase 1, and CIP/KIP family in colon cancer. The current study was designed to evaluate the effect of zebularine in comparison to and in combination with trichostatin A (TSA) on p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2, DNA methyltransferases (DNMT1, 3a and 3b) and histone deacetylases (HDAC1, 2, and 3) genes expression, cell growth inhibition and apoptosis induction in colon cancer LS 180 cell line. MATERIALS AND METHODS The colon cancer LS 180 cell line was cultured and treated with zebularine and TSA. To determine cell viability, apoptosis, and the relative expression level of the genes, MTT assay, cell apoptosis assay, and qRT-PCR were done respectively. RESULTS Both compounds significantly inhibited cell growth, and induced apoptosis. Furthermore, both compounds increased p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 significantly. Additionally, zebularine and TSA decreased DNMTs and HDACs gene expression respectively. CONCLUSION The zebularine and TSA can reactivate the CIP/KIP family through inhibition of DNMTs and HDACs genes activity. .
Collapse
Affiliation(s)
| | - Fraidoon Kavoosi
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
9
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Guenter RE, Aweda T, Carmona Matos DM, Whitt J, Chang AW, Cheng EY, Liu XM, Chen H, Lapi SE, Jaskula-Sztul R. Pulmonary Carcinoid Surface Receptor Modulation Using Histone Deacetylase Inhibitors. Cancers (Basel) 2019; 11:E767. [PMID: 31163616 PMCID: PMC6627607 DOI: 10.3390/cancers11060767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Pulmonary carcinoids are a type of neuroendocrine tumor (NET) accounting for 1-2% of lung cancer cases. Currently, Positron Emission Tomography (PET)/CT based on the radiolabeled sugar analogue [18F]-FDG is used to diagnose and stage pulmonary carcinoids, but is suboptimal due to low metabolic activity in these tumors. A new technique for pulmonary carcinoid imaging, using PET/CT with radiolabeled somatostatin analogs that specifically target somatostatin receptor subtype 2 (SSTR2), is becoming more standard, as many tumors overexpress SSTR2. However, pulmonary carcinoid patients with diminished SSTR2 expression are not eligible for this imaging or any type of SSTR2-specific treatment. We have found that histone deacetylase (HDAC) inhibitors can upregulate the expression of SSTR2 in pulmonary carcinoid cell lines. In this study, we used a non-cytotoxic dose of HDAC inhibitors to induce pulmonary carcinoid SSTR2 expression in which we confirmed in vitro and in vivo. A non-cytotoxic dose of the HDAC inhibitors: thailandepsin A (TDP-A), romidepsin (FK228), suberoylanilide hydroxamic acid (SAHA), AB3, and valproic acid (VPA) were administered to promote SSTR2 expression in pulmonary carcinoid cell lines and xenografts. This SSTR2 upregulation technique using HDAC inhibitors could enhance radiolabeled somatostatin analog-based imaging and the development of potential targeted treatments for pulmonary carcinoid patients with marginal or diminished SSTR2 expression.
Collapse
Affiliation(s)
- Rachael E Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Tolulope Aweda
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Danilea M Carmona Matos
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
- San Juan Bautista School of Medicine, Caguas, PR 00726, USA.
| | - Jason Whitt
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Alexander W Chang
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Eric Y Cheng
- College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - X Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Renata Jaskula-Sztul
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
11
|
Lascano S, Lopez M, Arimondo PB. Natural Products and Chemical Biology Tools: Alternatives to Target Epigenetic Mechanisms in Cancers. CHEM REC 2018; 18:1854-1876. [PMID: 30537358 DOI: 10.1002/tcr.201800133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone acetylation are widely studied epigenetic modifications. They are involved in numerous pathologies such as cancer, neurological disease, inflammation, obesity, etc. Since the discovery of the epigenome, numerous compounds have been developed to reverse DNA methylation and histone acetylation aberrant profile in diseases. Among them several were inspired by Nature and have a great interest as therapeutic molecules. In the quest of finding new ways to target epigenetic mechanisms, the use of chemical tools is a powerful strategy to better understand epigenetic mechanisms in biological systems. In this review we will present natural products reported as DNMT or HDAC inhibitors for anticancer treatments. We will then discuss the use of chemical tools that have been used in order to explore the epigenome.
Collapse
Affiliation(s)
- Santiago Lascano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris cedex 15, France
| |
Collapse
|
12
|
Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer 2018; 17:154. [PMID: 30352606 PMCID: PMC6198524 DOI: 10.1186/s12943-018-0903-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. In 2017, it was the fifth most common cancer in women. Although the majority of thyroid tumors are curable, about 2-3% of thyroid cancers are refractory to standard treatments. These undifferentiated, highly aggressive and mostly chemo-resistant tumors are phenotypically-termed anaplastic thyroid cancer (ATC). ATCs are resistant to standard therapies and are extremely difficult to manage. In this review, we provide the information related to current and recently emerged first-line systemic therapy (Dabrafenib and Trametinib) along with promising therapeutics which are in clinical trials and may be incorporated into clinical practice in the future. Different categories of promising therapeutics such as Aurora kinase inhibitors, multi-kinase inhibitors, epigenetic modulators, gene therapy using oncolytic viruses, apoptosis-inducing agents, and immunotherapy are reviewed. Combination treatment options that showed synergistic and antagonistic effects are also discussed. We highlight ongoing clinical trials in ATC and discuss how personalized medicine is crucial to design the second line of treatment. Besides using conventional combination therapy, embracing a personalized approach based on advanced genomics and proteomics assessment will be crucial to developing a tailored treatment plan to improve the chances of clinical success.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Kiara Tulla
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Ajay V. Maker
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | | | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| |
Collapse
|
13
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
14
|
Celano M, Mio C, Sponziello M, Verrienti A, Bulotta S, Durante C, Damante G, Russo D. Targeting post-translational histone modifications for the treatment of non-medullary thyroid cancer. Mol Cell Endocrinol 2018; 469:38-47. [PMID: 28579118 DOI: 10.1016/j.mce.2017.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Genomic and epigenetic alterations are now being exploited as molecular targets in cancer treatment. Abnormalities involving the post-translational modification of histones have been demonstrated in thyroid cancer, and they are regarded as promising molecular targets for novel drug treatment of tumors that are resistant to conventional therapies. After a brief overview of the histone modifications most commonly associated with human malignancies, we will review recently published preclinical and clinical findings regarding the use of histone-activity modulators in thyroid cancers. Particular attention will be focused on their use as re-differentiating or anti-proliferating agents, the differential effects observed when they are used alone and in combination with other targeted drugs, and current prospects for their use in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
15
|
Jang S, Jin H, Roy M, Ma AL, Gong S, Jaskula‐Sztul R, Chen H. Antineoplastic effects of histone deacetylase inhibitors in neuroendocrine cancer cells are mediated through transcriptional regulation of Notch1 by activator protein 1. Cancer Med 2017; 6:2142-2152. [PMID: 28776955 PMCID: PMC5603840 DOI: 10.1002/cam4.1151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023] Open
Abstract
Notch signaling is minimally active in neuroendocrine (NE) cancer cells. While histone deacetylase inhibitors (HDACi) suppress NE cancer growth by inducing Notch, the molecular mechanism underlying this interplay has not yet been defined. NE cancer cell lines BON, H727, and MZ-CRC-1 were treated with known HDACi Thailadepsin-A (TDP-A) and valproic acid (VPA), and Notch1 mRNA expression was measured with RT-PCR. Truncated genomic fragments of the Notch1 promotor region fused with luciferase reporter were used to identify the potential transcription factor (TF) binding site. The key regulatory TF was identified with the electrophoretic mobility shift assay (EMSA). The effect of HDACi on Notch1 level was determined before and after silencing the TF. TDP-A and VPA induced Notch1 mRNA in a dose-dependent manner. A functional DNA motif at -80 to -52 from the Notch1 start codon responsible for the HDACi-dependent Notch1 induction was identified. Mutation of this core sequence failed to induce luciferase activity despite HDACi treatment. EMSA showed the greatest gel shift with AP-1 in nuclear extracts. Knockdown of AP-1 significantly attenuated the effect of HDACi on Notch1 induction. Interestingly, AP-1 transfection did not alter Notch1 level, suggesting that AP-1 is necessary but insufficient for HDACi activation of Notch1. Therefore, AP-1 is the TF that binds to a specific transcription-binding site within the Notch1 promotor region to trigger Notch1 transcription. Elucidating the HDACi activation mechanism may lead to the development of novel therapeutic options against NE cancers and facilitate the identification of clinical responders and prevent adverse effects.
Collapse
Affiliation(s)
- Samuel Jang
- Howard Hughes Medical InstituteBirminghamAlabama35233
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama35233
| | - Haining Jin
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama35233
| | - Madhuchhanda Roy
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama35233
| | - Alice L. Ma
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama35233
| | - Shaoqin Gong
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53715
| | | | - Herbert Chen
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama35233
| |
Collapse
|
16
|
Histone deacetylase inhibitor thailandepsin-A activates Notch signaling and suppresses neuroendocrine cancer cell growth in vivo. Oncotarget 2017; 8:70828-70840. [PMID: 29050323 PMCID: PMC5642598 DOI: 10.18632/oncotarget.19993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022] Open
Abstract
Novel therapies for neuroendocrine (NE) cancers are desperately needed as they frequently present as metastatic disease and cause debilitating symptoms by secreting excessive hormones. Induction of Notch isoforms has a tumor suppressive effect in NE cancer cell lines, and we have observed that histone deacetylase inhibitors (HDACi) potently activate Notch. In this study, we describe the potential for Burkholderia thailandensis-derived class I HDACi thailandepsin A (TDP-A) as a Notch activator and therapeutic agent against NE cancer. IC50 for TDP-A was determined to be 4-6 nM in NE cancer cell lines (BON, MZ-CRC-1, and TT) without cytotoxicity to lung fibroblasts. The binding characteristics of TDP-A to its target HDAC1 was examined using bioluminescence resonance energy transfer (BRET). Western blot and flow cytometry analysis showed that TDP-A induces cell cycle arrest and apoptosis in a dose-dependent manner. TDP-A dose-dependently activated the Notch pathway as measured by increasing functional CBF1-luciferase reporter signal and mRNA and protein expressions of Notch isoforms, which were attenuated by pretreatment with γ-secretase inhibitor DAPT. Furthermore, TDP-A lead to changes in expression level of downstream targets of Notch pathway and reduced expression of NE cancer markers. An in vivo study demonstrated that TDP-A suppressed NE cancer progression. These results show that TDP-A, as a Notch activator, is a promising agent against NE cancers.
Collapse
|
17
|
Manzella L, Stella S, Pennisi MS, Tirrò E, Massimino M, Romano C, Puma A, Tavarelli M, Vigneri P. New Insights in Thyroid Cancer and p53 Family Proteins. Int J Mol Sci 2017. [PMID: 28635633 PMCID: PMC5486146 DOI: 10.3390/ijms18061325] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancers are common endocrine malignancies that comprise tumors with different clinical and histological features. Indeed, papillary and follicular thyroid cancers are slow-growing, well-differentiated tumors, whereas anaplastic thyroid cancers are undifferentiated neoplasias that behave much more aggressively. Well-differentiated thyroid carcinomas are efficiently cured by surgery and radioiodine, unlike undifferentiated tumors that fail to uptake radioactive iodine and are usually resistant to chemotherapy. Therefore, novel and more effective therapies for these aggressive neoplasias are urgently needed. Whereas most genetic events underlying the pathogenesis of well-differentiated thyroid cancers have been identified, the molecular mechanisms that generate undifferentiated thyroid carcinomas are still unclear. To date, one of the best-characterized genetic alterations leading to the development of poorly differentiated thyroid tumors is the loss of the p53 tumor suppressor gene. In addition, the existence of a complex network among p53 family members (p63 and p73) and their interactions with other factors that promote thyroid cancer progression has been well documented. In this review, we provide an update on the current knowledge of the role of p53 family proteins in thyroid cancer and their possible use as a therapeutic target for the treatment of the most aggressive variants of this disease.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Martina Tavarelli
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi Nesima Medical Center, University of Catania, 95122 Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
18
|
Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 2017; 22:8. [PMID: 28536639 PMCID: PMC5415770 DOI: 10.1186/s11658-017-0038-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common cancer worldwide. The treatment of locally advanced disease generally requires various combinations of radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal treatment, most of the patients relapse. Identification of molecules that sustain cancer cell growth and survival has made molecular targeting a feasible therapeutic strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family, which is overexpressed in most of the malignancies including SCC and totally absent in most of the normal tissues. This feature makes survivin an ideal target for cancer therapy. It orchestrates several important mechanisms to support cancer cell survival including inhibition of apoptosis and regulation of cell division. Overexpression of survivin in tumors is also associated with poor prognosis, aggressive tumor behavior, resistance to therapy, and high tumor recurrence. Various strategies have been developed to target survivin expression in cancer cells, and their effects on apoptosis induction and tumor growth attenuation have been demonstrated. In this review, we discuss recent advances in therapeutic potential of survivin in cancer treatment.
Collapse
Affiliation(s)
- Zakir Khan
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India.,Department of Biomedical Sciences, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Prakash Singh Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India
| |
Collapse
|
19
|
Rodríguez-Rodero S, Delgado-Álvarez E, Díaz-Naya L, Martín Nieto A, Menéndez Torre E. Epigenetic modulators of thyroid cancer. ACTA ACUST UNITED AC 2017; 64:44-56. [PMID: 28440770 DOI: 10.1016/j.endinu.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
There are some well known factors involved in the etiology of thyroid cancer, including iodine deficiency, radiation exposure at early ages, or some genetic changes. However, epigenetic modulators that may contribute to development of these tumors and be helpful to for both their diagnosis and treatment have recently been discovered. The currently known changes in DNA methylation, histone modifications, and non-coding RNAs in each type of thyroid carcinoma are reviewed here.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain; Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Elías Delgado-Álvarez
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Lucía Díaz-Naya
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Alicia Martín Nieto
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Edelmiro Menéndez Torre
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
20
|
Damanakis AI, Eckhardt S, Wunderlich A, Roth S, Wissniowski TT, Bartsch DK, Di Fazio P. MicroRNAs let7 expression in thyroid cancer: correlation with their deputed targets HMGA2 and SLC5A5. J Cancer Res Clin Oncol 2016; 142:1213-1220. [PMID: 26960757 DOI: 10.1007/s00432-016-2138-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE Thyroid cancer (TC), the most common endocrine malignancy, increases its incidence worldwide. MicroRNAs have been shown to be abnormally expressed in tumors and could represent valid diagnostic markers for patients affected by TC. Our aim was to analyze the expression of tumorsuppressor hsa-let7b-5p and hsa-let7f-5p, together with their predicted targets SLC5A5 (NIS) and HMGA2, in papillary (PTC), follicular (FTC) and anaplastic (ATC). METHODS 8 FTC, 14 PTC, 12 ATC and three normal thyroid tissue samples were analyzed for the expression of pre-let7b, hsa-let7b-5p and hsa-let7f-5p as SLC5A5 and HMGA2 by RT-qPCR. Data were analyzed by REST 2008. RESULTS FTC patients showed a significant down-regulation of hsa-let7b-5p and its precursor. hsa-let7f-5p was overexpressed, and SLC5A5 was strongly suppressed. HMGA2 was overexpressed, reflecting no correlation with its regulatory let7 miRNAs. PTC samples were characterized by up-regulation of hsa-let7b-5p, its precursor and hsa-let7f-5p. SLC5A5 was strongly suppressed in comparison with normal thyroid tissue. HMGA2 was overexpressed, as shown in FTC, also. ATC samples showed a similar miRNAs profile as PTC. In contrast with FTC and PTC, these patients showed a stable or up-regulated SLC5A5 and HMGA2. CONCLUSIONS Expression of HMGA2 is not correlated with the regulatory let7 miRNAs. Interestingly, SLC5A5 was down-regulated in FTC and PTC. Its expression could be modulated by hsa-let-7f-5p. ATC showed a loss of SLC5A5/hsa-let7f-5p correlation. SLC5A5, in ATC, needs further investigation to clarify the genetic/epigenetic mechanism altering its expression.
Collapse
Affiliation(s)
- Alexander I Damanakis
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Sabine Eckhardt
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Annette Wunderlich
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Silvia Roth
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Thaddeus T Wissniowski
- Division of Gastroenterology and Endocrinology, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| |
Collapse
|
21
|
Chen G, Jaskula-Sztul R, Harrison A, Dammalapati A, Xu W, Cheng Y, Chen H, Gong S. KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy. Biomaterials 2016; 97:22-33. [PMID: 27156249 DOI: 10.1016/j.biomaterials.2016.04.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Neuroendocrine (NE) cancers can cause significant patient morbidity. Besides surgery, there are no curative treatments for NE cancers and their metastases, emphasizing the need for the development of other forms of therapy. In this study, multifunctional unimolecular micelles were developed for targeted NE cancer therapy. The unimolecular micelles were formed by multi-arm star amphiphilic block copolymer poly(amidoamine)-poly(valerolactone)-poly(ethylene glycol) conjugated with KE108 peptide and Cy5 dye (abbreviated as PAMAM-PVL-PEG-KE108/Cy5). The unimolecular micelles with a spherical core-shell structure exhibited a uniform size distribution and excellent stability. The hydrophobic drug thailandepsin-A (TDP-A), a recently discovered HDAC inhibitor, was physically encapsulated into the hydrophobic core of the micelles. KE108 peptide, a somatostatin analog possessing high affinity for all five subtypes of somatostatin receptors (SSTR 1-5), commonly overexpressed in NE cancer cells, was used for the first time as an NE cancer targeting ligand. KE108 exhibited superior targeting abilities compared to other common somatostatin analogs, such as octreotide, in NE cancer cell lines. The in vitro assays demonstrated that the TDP-A-loaded, KE108-targeted micelles exhibited the best capabilities in suppressing NE cancer cell growth. Moreover, the in vivo near-infrared fluorescence imaging on NE-tumor-bearing nude mice showed that KE108-conjugated micelles exhibited the greatest tumor accumulation due to their passive targeting and active targeting capabilities. Finally, TDP-A-loaded and KE108-conjugated micelles possessed the best anticancer efficacy without detectable systemic toxicity. Thus, these novel TDP-A-loaded and KE108-conjugated unimolecular micelles offer a promising approach for targeted NE cancer therapy.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - April Harrison
- Department of Surgery, University of Wisconsin-Madison, WI 53705, USA
| | | | - Wenjin Xu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiqiang Cheng
- University of Texas Health Sciences Center San Anto-Division, San Antonio, TX 76107, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
22
|
Jaskula-Sztul R, Xu W, Chen G, Harrison A, Dammalapati A, Nair R, Cheng Y, Gong S, Chen H. Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine cancer therapy. Biomaterials 2016; 91:1-10. [PMID: 26994874 DOI: 10.1016/j.biomaterials.2016.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
Abstract
Due to the overexpression of somatostatin receptors in neuroendocrine (NE) cancers, drug nanocarriers conjugated with somatostatin analogs, such as octreotide (OCT), for targeted NE cancer therapy may offer increased therapeutic efficacies and decreased adverse effects. In this study, OCT-functionalized unimolecular micelles were prepared using individual hyperbranched polymer molecules consisting of a hyperbranched polymer core (Boltorn(®) H40) and approximately 25 amphiphilic polylactide-poly(ethlyene glycol) (PLA-PEG) block copolymer arms (H40-PLA-PEG-OCH3/OCT). The resulting micelles, exhibiting a uniform core-shell shape and an average hydrodynamic diameter size of 66 nm, were loaded with thailandepsin-A (TDP-A), a relatively new naturally produced histone deacetylase (HDAC) inhibitor. In vitro studies using flow cytometry and confocal laser scanning microscopy (CLSM) demonstrated that OCT conjugation enhanced the cellular uptake of the unimolecular micelles. Consequently, TDP-A-loaded and OCT-conjugated micelles exhibited the highest cytotoxicity and caused the highest reduction of NE tumor markers. Finally, the in vivo studies on NE cancer bearing nude mice demonstrated that TDP-A-loaded and OCT-conjugated micelles possessed superior anticancer activity in comparison with other TDP-A formulations or drug alone, while showing no detectable systemic toxicity. Thus, these TDP-A-loaded and OCT-conjugated micelles offer a promising approach for targeted NE cancer therapy.
Collapse
Affiliation(s)
| | - Wenjin Xu
- Department of Biomedical Engineering and Wisconsin Institutes for Discovery, University of Wisconsin-Madison, 1550 Engineering Drive, 3144 Engineering Centers Building, Madison, WI, 53715, USA
| | - Guojun Chen
- Department of Biomedical Engineering and Wisconsin Institutes for Discovery, University of Wisconsin-Madison, 1550 Engineering Drive, 3144 Engineering Centers Building, Madison, WI, 53715, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - April Harrison
- Department of Surgery, University of Wisconsin, Madison, WI, 53705, USA
| | | | - Renu Nair
- Department of Surgery, University of Wisconsin, Madison, WI, 53705, USA
| | - Yiqiang Cheng
- University of Texas Health Sciences Center San Anto-Division, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering and Wisconsin Institutes for Discovery, University of Wisconsin-Madison, 1550 Engineering Drive, 3144 Engineering Centers Building, Madison, WI, 53715, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Herbert Chen
- Department of Surgery, University of Alabama - Birmingham, Birmingham, 1808 7th Avenue South / Suite 502, 35233, AL, USA.
| |
Collapse
|
23
|
Novel analogs targeting histone deacetylase suppress aggressive thyroid cancer cell growth and induce re-differentiation. Cancer Gene Ther 2015; 22:410-6. [PMID: 26251030 DOI: 10.1038/cgt.2015.37] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/24/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
Abstract
To develop novel therapies for aggressive thyroid cancers, we have synthesized a collection of histone deacetylase (HDAC) inhibitor analogs named AB1 to AB13, which have different linkers between a metal chelating group and a hydrophobic cap. The purpose of this study was to screen out the most effective compounds and evaluate the therapeutic efficacy. AB2, AB3 and AB10 demonstrated the lowest half-maximal inhibitory concentration (IC50) values in one metastatic follicular and two anaplastic thyroid cancer cell lines. Treatment with each of the three ABs resulted in an increase in apoptosis markers, including cleaved poly adenosine diphosphate ribose polymerase (PARP) and cleaved caspase 3. Additionally, the expression of cell-cycle regulatory proteins p21(WAF1) and p27(Kip1) increased with the treatment of ABs while cyclin D1 decreased. Furthermore, AB2, AB3 and AB10 were able to induce thyrocyte-specific genes in the three thyroid cancer cell lines indicated by increased expression levels of sodium iodide symporter, paired box gene 8, thyroid transcription factor 1 (TTF1), TTF2 and thyroid-stimulating hormone receptors. AB2, AB3 and AB10 suppress thyroid cancer cell growth via cell-cycle arrest and apoptosis. They also induce cell re-differentiation, which could make aggressive cancer cells more susceptible to radioactive iodine therapy.
Collapse
|
24
|
Xiao K, Li YP, Wang C, Ahmad S, Vu M, Kuma K, Cheng YQ, Lam KS. Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials 2015. [PMID: 26218744 DOI: 10.1016/j.biomaterials.2015.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are an emerging class of targeted therapy against cancers. Thailandepsin A (TDP-A) is a recently discovered class I HDAC inhibitor with broad anti-proliferative activities. In the present study, we aimed to investigate the potential of TDP-A in the treatment of breast cancer. We demonstrated that TDP-A inhibited cell proliferation and induced apoptosis in breast cancer cells at low nanomolar concentrations. TDP-A activated the intrinsic apoptotic pathway through increase of pro-apoptotic protein Bax, decrease of anti-apoptotic Bcl-2, and cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP). TDP-A also induced cell cycle arrest at the G2/M phase, and promoted the production of reactive oxygen species (ROS). We have successfully encapsulated TDP-A into our recently developed disulfide cross-linked micelles (DCMs), improving its water solubility and targeted delivery. TDP-A loaded DCMs (TDP-A/DCMs) possess the characteristics of high loading capacity (>20%, w/w), optimal and monodisperse particle size (16 ± 4 nm), outstanding stability with redox stimuli-responsive disintegration, sustained drug release, and preferential uptake in breast tumors. In the MDA-MB-231 breast cancer xenograft model, TDP-A/DCMs were more efficacious than the FDA-approved FK228 at well-tolerated doses. Furthermore, TDP-A/DCMs exhibited synergistic anticancer effects when combined with the proteasome inhibitor bortezomib (BTZ) loaded DCMs (BTZ/DCMs). Our results indicate that TDP-A nanoformulation alone or in combination with BTZ nanoformulation are efficacious against breast cancer.
Collapse
Affiliation(s)
- Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| | - Yuan-Pei Li
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Cheng Wang
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Sarah Ahmad
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Michael Vu
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Krishneel Kuma
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Yi-Qiang Cheng
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
25
|
McFadden D, Souba WW. Change is good! The Journal of Surgical Research: 2014-2015. J Surg Res 2015; 197:1-4. [PMID: 25982043 DOI: 10.1016/j.jss.2015.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David McFadden
- Department of Surgery, University of Connecticut Health Center, Hartford, CT.
| | - Wiley W Souba
- Department of Surgery, Dartmouth College of Medicine, Hanover, NH
| |
Collapse
|
26
|
Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015; 20:3898-941. [PMID: 25738536 PMCID: PMC4372801 DOI: 10.3390/molecules20033898] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/04/2023] Open
Abstract
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Madhusoodanan Mottamal
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Tien L Huang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|