1
|
Andrianova NV, Buyan MI, Brezgunova AA, Cherkesova KS, Zorov DB, Plotnikov EY. Hemorrhagic Shock and Mitochondria: Pathophysiology and Therapeutic Approaches. Int J Mol Sci 2025; 26:1843. [PMID: 40076469 PMCID: PMC11898946 DOI: 10.3390/ijms26051843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Severe injuries and some pathologies associated with massive bleeding, such as maternal hemorrhage, gastrointestinal and perioperative bleeding, and rupture of an aneurysm, often lead to major blood loss and the development of hemorrhagic shock. A sharp decrease in circulating blood volume triggers a vicious cycle of vasoconstriction and coagulopathy leading to ischemia of all internal organs and, in severe decompensated states, ischemia of the brain and heart. The basis of tissue damage and dysfunction in hemorrhagic shock is an interruption in the supply of oxygen and substrates for energy production to the cells, making the mitochondria a source and target of oxidative stress and proapoptotic signaling. Based on these mechanisms, different strategies are proposed to treat the multiple organ failure that occurs in shock. The main direction of such treatment is to provide the cells with a sufficient amount of substrates that utilize oxidative phosphorylation at different stages and increase the efficiency of energy production by the mitochondria. These strategies include restoring the efficiency of mitochondrial complexes, for example, by restoring the nicotinamide adenine dinucleotide (NAD) pool. Another direction is approaches to minimize oxidative stress as well as apoptosis, which are primarily dependent on the mitochondria. There are also a number of other methods to reduce mitochondrial dysfunction and improve the quality of the mitochondrial population. In this review, we consider such strategies for the treatment of hemorrhagic shock and show the promise of therapeutic approaches aimed at restoring the bioenergetic functions of the cell and protecting mitochondria.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.V.A.); (E.Y.P.)
| | - Marina I. Buyan
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.V.A.); (E.Y.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Anna A. Brezgunova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.V.A.); (E.Y.P.)
| | - Kseniia S. Cherkesova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.V.A.); (E.Y.P.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.V.A.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.V.A.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia
| |
Collapse
|
2
|
Nanashima A, Hiyoshi M, Imamura N, Hamada T, Tsuchimochi Y, Shimizu I, Ota Y, Furukawa K, Tsuneyoshi I. Measuring intraoperative anesthetic parameters during hepatectomy with inferior vena cava clamping. Langenbecks Arch Surg 2023; 408:455. [PMID: 38049533 DOI: 10.1007/s00423-023-03172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/04/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE Uncontrollable bleeding remained problematic in anatomical hepatectomy exposing hepatic veins. Based on the inferior vena cava (IVC) anatomy, we attempted to analyze the hemodynamic and surgical effects of the combined IVC-partial clamp (PC) accompanied with the Trendelenburg position (TP). METHODS We prospectively assessed 26 consecutive patients who underwent anatomical hepatectomies exposing HV trunks between 2020 and 2023. Patients were divided into three groups: use of IVC-PC (group 1), no use of IVC-PC (group 2), and use of IVC-PC accompanied with TP (group 3). In 10 of 26 patients (38%), hepatic venous pressure was examined using transhepatic catheter insertion. RESULTS IVC-PC was performed in 15 patients (58%). Operating time and procedures did not significantly differ between groups. A direct hemostatic effect on hepatic veins was evaluated in 60% and 70% of patients in groups 1 and 3, respectively. Group 1 showed significantly more unstable vital status and vasopressor use (p < 0.01). Blood or fluid transfusion and urinary output were similar between groups. Group 2 had a significantly lower baseline central venous pressure (CVP), while group 3 showed a significant increase in CVP in TP. CVP under IVC-PC seemed lower than under TP; however, not significantly. Hepatic venous pressure did not significantly differ between groups. Systolic arterial blood pressure significantly decreased via IVC-PC in group 1 and to a similar extent in group 3. Heart rate significantly increased during IVC-PC (p < 0.05). CONCLUSION IVC-PC combined with the TP may be an alternative procedure to control intrahepatic venous bleeding during anatomical hepatectomy exposing hepatic venous trunks.
Collapse
Affiliation(s)
- Atsushi Nanashima
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan.
| | - Masahide Hiyoshi
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| | - Naoya Imamura
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| | - Takeomi Hamada
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| | - Yuuki Tsuchimochi
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| | - Ikko Shimizu
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| | - Yusuke Ota
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| | - Koji Furukawa
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| | - Isao Tsuneyoshi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 5200, Japan
| |
Collapse
|
3
|
Wolfschmitt EM, Hogg M, Vogt JA, Zink F, Wachter U, Hezel F, Zhang X, Hoffmann A, Gröger M, Hartmann C, Gässler H, Datzmann T, Merz T, Hellmann A, Kranz C, Calzia E, Radermacher P, Messerer DAC. The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation. Front Immunol 2023; 14:1125594. [PMID: 36911662 PMCID: PMC9996035 DOI: 10.3389/fimmu.2023.1125594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers. Methods After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA). Results PBMCs showed significantly higher mitochondrial O2 uptake and lowerO 2 • - production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis. Conclusion In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected.O 2 • - concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods.
Collapse
Affiliation(s)
- Eva-Maria Wolfschmitt
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Melanie Hogg
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Josef Albert Vogt
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Fabian Zink
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Ulrich Wachter
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Felix Hezel
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Xiaomin Zhang
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Michael Gröger
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Clair Hartmann
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - Holger Gässler
- Department of Anaesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Thomas Datzmann
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - Tamara Merz
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Andreas Hellmann
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
5
|
Gröger M, Hogg M, Abdelsalam E, Kress S, Hoffmann A, Stahl B, Saub V, Denoix N, McCook O, Calzia E, Wolfschmitt EM, Wachter U, Vogt JA, Wang R, Radermacher P, Merz T, Nussbaum BL. Effects of Sodium Thiosulfate During Resuscitation From Trauma-and-Hemorrhage in Cystathionine Gamma Lyase (CSE) Knockout Mice. Shock 2022; 57:131-139. [PMID: 34172609 DOI: 10.1097/shk.0000000000001828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sodium thiosulfate (Na2S2O3) is a clinically established drug with antioxidant and sulphide-releasing properties. Na2S2O3 mediated neuro- and cardioprotective effects in ischemia/reperfusion models and anti-inflammatory effects in LPS-induced acute lung injury. Moreover, Na2S2O3 improved lung function during resuscitation from hemorrhagic shock in swine with pre-existing atherosclerosis, characterized by decreased expression of cystathionine γ-lyase (CSE), a major source of hydrogen sulfide (H2S) synthesis in the vasculature. Based on these findings, we investigated the effects of Na2S2O3 administration during resuscitation from trauma-and-hemorrhage in mice under conditions of whole body CSE deficit. METHODS After blast wave-induced blunt chest trauma and surgical instrumentation, CSE knockout (CSE-/-) mice underwent 1 h of hemorrhagic shock (MAP 35 ± 5 mm Hg). At the beginning of resuscitation comprising retransfusion, norepinephrine support and lung-protective mechanical ventilation, animals received either i.v. Na2S2O3 (0.45 mg g-1, n = 12) or vehicle (saline, n = 13). Hemodynamics, acid-base status, metabolism using stable isotopes, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, mitochondrial respiratory capacity, and immunoblotting. RESULTS Na2S2O3 treatment improved arterial paO2 (P = 0.03) coinciding with higher lung tissue glucocorticoid receptor expression. Norepinephrine requirements were lower in the Na2S2O3 group (P < 0.05), which was associated with lower endogenous glucose production and higher urine output. Na2S2O3 significantly increased renal tissue IκBα and heme oxygenase-1 expression, whereas it lowered kidney IL-6 and MCP-1 levels. CONCLUSION Na2S2O3 exerted beneficial effects during resuscitation of murine trauma-and-hemorrhage in CSE-/- mice, confirming and extending the previously described organ-protective and anti-inflammatory properties of Na2S2O3. The findings make Na2S2O3 a potentially promising therapeutic option in the context of impaired CSE activity and/or reduced endogenous H2S availability.
Collapse
Affiliation(s)
- Michael Gröger
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Melanie Hogg
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Essam Abdelsalam
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Sandra Kress
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Bettina Stahl
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Veronique Saub
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Nicole Denoix
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
- Psychosomatic Medicine and Psychotherapy Clinic, University Hospital Ulm, Germany
| | - Oscar McCook
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Enrico Calzia
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Ulrich Wachter
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Germany
| | - Josef A Vogt
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Rui Wang
- Faculty of Science, York University, Toronto, ON, Canada
| | - Peter Radermacher
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Tamara Merz
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
| | - Benedikt L Nussbaum
- Institute for Anaesthesiologic Pathophysiology and Process Engineering, University Hospital Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Germany
| |
Collapse
|
6
|
Merz T, McCook O, Denoix N, Radermacher P, Waller C, Kapapa T. Biological Connection of Psychological Stress and Polytrauma under Intensive Care: The Role of Oxytocin and Hydrogen Sulfide. Int J Mol Sci 2021; 22:9192. [PMID: 34502097 PMCID: PMC8430789 DOI: 10.3390/ijms22179192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin (OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality after trauma mainly depend on the presence of HS and/or TBI. Rapid "repayment of the O2 debt" and prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions (PEMC's) can aggravate the occurrence and severity of complications after trauma. In addition to the "classic" chronic diseases (of cardiovascular or metabolic origin), there is growing awareness of psychological PEMC's, e.g., early life stress (ELS) increases the predisposition to develop post-traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress response, but is also a promising therapeutic target in the prevention of chronic diseases induced by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S have been shown to interact in physical and psychological trauma and could, thus, be therapeutic targets to mitigate the acute post-traumatic effects of chronic PEMC's. OT and H2S both share anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of nitric oxide (NO).
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
- Clinic for Psychosomatic Medicine and Psychotherapy, Medical Center, Ulm University, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Thomas Kapapa
- Clinic for Neurosurgery, Medical Center, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
7
|
Packialakshmi B, Stewart IJ, Burmeister DM, Chung KK, Zhou X. Large animal models for translational research in acute kidney injury. Ren Fail 2021; 42:1042-1058. [PMID: 33043785 PMCID: PMC7586719 DOI: 10.1080/0886022x.2020.1830108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While extensive research using animal models has improved the understanding of acute kidney injury (AKI), this knowledge has not been translated into effective treatments. Many promising interventions for AKI identified in mice and rats have not been validated in subsequent clinical trials. As a result, the mortality rate of AKI patients remains high. Inflammation plays a fundamental role in the pathogenesis of AKI, and one reason for the failure to translate promising therapeutics may lie in the profound difference between the immune systems of rodents and humans. The immune systems of large animals such as swine, nonhuman primates, sheep, dogs and cats, more closely resemble the human immune system. Therefore, in the absence of a basic understanding of the pathophysiology of human AKI, large animals are attractive models to test novel interventions. However, there is a lack of reviews on large animal models for AKI in the literature. In this review, we will first highlight differences in innate and adaptive immunities among rodents, large animals, and humans in relation to AKI. After illustrating the potential merits of large animals in testing therapies for AKI, we will summarize the current state of the evidence in terms of what therapeutics have been tested in large animal models. The aim of this review is not to suggest that murine models are not valid to study AKI. Instead, our objective is to demonstrate that large animal models can serve as valuable and complementary tools in translating potential therapeutics into clinical practice.
Collapse
Affiliation(s)
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
8
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
9
|
Eleftheriadis T, Pissas G, Nikolaou E, Filippidis G, Liakopoulos V, Stefanidis I. Mistimed H 2S upregulation, Nrf2 activation and antioxidant proteins levels in renal tubular epithelial cells subjected to anoxia and reoxygenation. Biomed Rep 2020; 13:3. [PMID: 32509306 DOI: 10.3892/br.2020.1309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/08/2020] [Indexed: 12/28/2022] Open
Abstract
Ischemia-reperfusion (I-R) injury is involved in the pathogenesis of several human diseases. In the present study, the kinetics of the H2S producing enzymes-nuclear factor erythroid 2-like 2 (Nrf2)-antioxidant proteins axis under anoxia or reoxygenation was evaluated, as well as its effects on survival of mouse renal proximal tubular epithelial cells (RPTECs). In RPTECs subjected to anoxia and subsequent reoxygenation, reactive oxygen species (ROS) production, lipid peroxidation, ferroptotic cell death, the levels of the H2S producing enzymes and H2S, the expression of Nrf2 and its transcriptional targets superoxide dismutase-3, glutathione reductase, ferritin H and cystine-glutamate antiporter, as well as apoptosis, and the levels of p53, Bax and phosphorylated p53 were assessed. When needed, the H2S producing enzyme inhibitor aminooxyacetate, or the ferroptosis inhibitor α-tocopherol, were used. Reoxygenation induced ferroptosis, whereas anoxia activated the p53-Bax pathway and induced apoptosis. The H2S producing enzymes-Nrf2-antioxidant proteins axis was activated only during anoxia and not during reoxygenation, when cellular viability is threatened by ROS overproduction and the ensuing ferroptosis. The activation of the above axis during anoxia ameliorated the effects of the apoptotic p53-Bax pathway, but did not adequately protect against apoptosis. In conclusion, the H2S-Nrf2 axis is activated by anoxia, and although it reduces apoptosis, it does not completely prevent apoptotic cell death. Additionally, following reoxygenation, the above axis was not activated. This mistimed activation of the H2S producing enzymes-Nrf2-antioxidant proteins axis contributes to reoxygenation-induced cell death. Determining the exact molecular mechanisms involved in reoxygenation-induced cell death may assist in the development of clinically relevant interventions for preventing I-R injury.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| |
Collapse
|
10
|
Datzmann T, Hoffmann A, McCook O, Merz T, Wachter U, Preuss J, Vettorazzi S, Calzia E, Gröger M, Kohn F, Schmid A, Denoix N, Radermacher P, Wepler M. Effects of sodium thiosulfate (Na2S2O3) during resuscitation from hemorrhagic shock in swine with preexisting atherosclerosis. Pharmacol Res 2020; 151:104536. [DOI: 10.1016/j.phrs.2019.104536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/16/2022]
|
11
|
Eleftheriadis T, Pissas G, Nikolaou E, Liakopoulos V, Stefanidis I. The H2S-Nrf2-Antioxidant Proteins Axis Protects Renal Tubular Epithelial Cells of the Native Hibernator Syrian Hamster from Reoxygenation-Induced Cell Death. BIOLOGY 2019; 8:74. [PMID: 31574983 PMCID: PMC6955957 DOI: 10.3390/biology8040074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022]
Abstract
During hibernation, repeated cycles of ischemia-reperfusion (I-R) leave vital organs without injury. Studying this phenomenon may reveal pathways applicable to improving outcomes in I-R injury-induced human diseases. We evaluated whether the H2S-nuclear factor erythroid 2-like 2 (Nrf2)-antioxidant proteins axis protects renal proximal tubular epithelial cells (RPTECs) of the native hibernator, the Syrian hamster, from reperfusion-induced cell death. To imitate I-R, the hamsters', and control mice's RPTECs were subjected to warm anoxia, washed, and then subjected to reoxygenation in fresh culture medium. Whenever required, the H2S-producing enzymes inhibitor aminooxyacetate or the lipid peroxidation inhibitor α-tocopherol were used. A handmade H2S detection methylene blue assay, a reactive oxygen species (ROS) detection kit, a LDH release cytotoxicity assay kit, and western blotting were used. Reoxygenation upregulated the H2S-producing enzymes cystathionine beta-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase in the hamster, but not in mouse RPTECs. As a result, H2S production increased only in the hamster RPTECs under reoxygenation conditions. Nrf2 expression followed the alterations of H2S production leading to an enhanced level of the antioxidant enzymes superoxide dismutase 3 and glutathione reductase, and anti-ferroptotic proteins ferritin H and cystine-glutamate antiporter. The upregulated antioxidant enzymes and anti-ferroptotic proteins controlled ROS production and rescued hamster RPTECs from reoxygenation-induced, lipid peroxidation-mediated cell death. In conclusion, in RPTECs of the native hibernator Syrian hamster, reoxygenation activates the H2S-Nrf2-antioxidant proteins axis, which rescues cells from reoxygenation-induced cell death. Further studies may reveal that the therapeutic activation of this axis in non-hibernating species, including humans, may be beneficial in I-R injury-induced diseases.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| |
Collapse
|
12
|
Abstract
Hemorrhagic shock is the leading cause of preventable death after trauma. Hibernation-based treatment approaches have been of increasing interest for various biomedical applications. Owing to apparent similarities in tissue perfusion and metabolic activity between severe blood loss and the hibernating state, hibernation-based approaches have also emerged for the treatment of hemorrhagic shock. Research has shown that hibernators are protected from shock-induced injury and inflammation. Utilizing the adaptive mechanisms that prevent injury in these animals may help alleviate the detrimental effects of hemorrhagic shock in non-hibernating species. This review describes hibernation-based preclinical and clinical approaches for the treatment of severe blood loss. Treatments include the delta opioid receptor agonist D-Ala-Leu-enkephalin (DADLE), the gasotransmitter hydrogen sulfide, combinations of adenosine, lidocaine, and magnesium (ALM) or D-beta-hydroxybutyrate and melatonin (BHB/M), and therapeutic hypothermia. While we focus on hemorrhagic shock, many of the described treatments may be used in other situations of hypoxia or ischemia/reperfusion injury.
Collapse
|
13
|
Extending the golden hour for Zone 1 resuscitative endovascular balloon occlusion of the aorta: Improved survival and reperfusion injury with intermittent versus continuous resuscitative endovascular balloon occlusion of the aorta of the aorta in a porcine severe truncal hemorrhage model. J Trauma Acute Care Surg 2019; 85:318-326. [PMID: 30080780 DOI: 10.1097/ta.0000000000001964] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Noncompressible hemorrhage can be controlled using resuscitative endovascular balloon occlusion of the aorta (REBOA). Prolonged ischemia limits REBOA application during Zone 1 deployment. Intermittent inflation/deflation may effectively mitigate this problem. METHODS A lethal abdominal vascular injury was created in 28 swines. Animals were randomized to controls (n = 7), 60 minutes full REBOA (FR, n = 5), time-based intermittent REBOA (iRT, n = 7), and pressure-based REBOA (iRP, n = 9). Intermittent groups had an initial inflation for 15 minutes, followed by 10-minute inflation: 3-minute deflation cycles (iRT), or an inflate/deflate schedule based on mean arterial pressure (MAP) less than 40 mm Hg (iRP). Experiments were concluded after 120 minutes or death (MAP < 20 mm Hg). RESULTS Intermittent REBOA animals all survived to 120 minutes versus 15 minutes for controls and 63 minutes for FR (p < 0.001). After 60 minutes, FR animals were more hypotensive (MAP 20 mm Hg vs. 80 mm Hg [iRP] and 100 mm Hg [iRT]; p < 0.001), had lower cardiac output (1.06 mL/min vs. 5.1 L/min [iRP] and 8.2 L/min [iRT]; p < 0.001), higher lactate (12.5 mg/dL vs. 8.5 mg/dL [iRP], p = 0.02), and decreased clot firmness on rotational thromboelastometry than iRP/T (64 mm vs. 69 mm [iRP] and 69 mm [iRT], p = 0.04). Acidosis was worse in iRT versus iRP at 120 minutes (pH 7.28 vs. pH 7.12; p = 0.02), improved lactate (11.9 mg/dL vs. 16.3 mg/dL; p = 0.04), and decreased whole blood resuscitation (452 mL vs. 646 mL, p = 0.05). Blood loss (clot weight) was higher in controls (2.0 kg) versus iRT and iRP (1.16 kg and 1.23 kg; p < 0.01) and not different from FR (0.87 kg; p = 0.10). CONCLUSION Intermittent REBOA can maintain supraceliac hemorrhage control while decreasing distal ischemia in a swine model. Prolonged survival times, decreased acidosis, and lower resuscitation requirements indicate that this technique could potentially extend Zone 1 REBOA deployment times. Schedules based on MAP may be superior to time-based regimens.
Collapse
|
14
|
Bredthauer A, Lehle K, Scheuerle A, Schelzig H, McCook O, Radermacher P, Szabo C, Wepler M, Simon F. Intravenous hydrogen sulfide does not induce neuroprotection after aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury in a human-like porcine model of ubiquitous arteriosclerosis. Intensive Care Med Exp 2018; 6:44. [PMID: 30357563 PMCID: PMC6200829 DOI: 10.1186/s40635-018-0209-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/14/2018] [Indexed: 12/02/2022] Open
Abstract
Objective In rodents, intravenous sulfide protected against spinal cord ischemia/reperfusion (I/R) injury during aortic balloon occlusion. We investigated the effect of intravenous sulfide on aortic occlusion-induced porcine spinal cord I/R injury. Methods Anesthetized and mechanically ventilated “familial hypercholesterolemia Bretoncelles Meishan” (FBM) pigs with high-fat-diet-induced hypercholesterolemia and atherosclerosis were randomized to receive either intravenous sodium sulfide 2 h (initial bolus, 0.2 mg kg body weight (bw)−1; infusion, 2 mg kg bw−1 h−1; n = 4) or vehicle (sodium chloride, n = 4) prior to 45 min of thoracic aortic balloon occlusion and for 8 h during reperfusion (infusion, 1 mg kg bw−1 h−1). During reperfusion, noradrenaline was titrated to maintain blood pressure at above 80% of the baseline level. Spinal cord function was assessed by motor evoked potentials (MEPs) and lower limb reflexes using a modified Tarlov score. Spinal cord tissue damage was evaluated in tissue collected at the end of experiment using hematoxylin and eosin and Nissl staining. Results A balloon occlusion time of 45 min resulted in marked ischemic neuron damage (mean of 16% damaged motoneurons in the anterior horn of all thoracic motor neurons) in the spinal cord. In the vehicle group, only one animal recovered partial neuronal function with regain of MEPs and link motions at each time point after deflating. All other animals completely lost neuronal functions. The intravenous application of sodium sulfide did not prevent neuronal cell injury and did not confer to functional recovery. Conclusion In a porcine model of I/R injury of the spinal cord, treatment with intravenous sodium sulfide had no protective effect in animals with a pre-existing arteriosclerosis.
Collapse
Affiliation(s)
- Andre Bredthauer
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Angelika Scheuerle
- Institute of Pathology - Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Martin Wepler
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Florian Simon
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.,Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
15
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
16
|
Burmeister DM, Gómez BI, Dubick MA. Molecular mechanisms of trauma-induced acute kidney injury: Inflammatory and metabolic insights from animal models. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2661-2671. [DOI: 10.1016/j.bbadis.2017.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
|
17
|
Dugbartey GJ, Hardenberg MC, Kok WF, Boerema AS, Carey HV, Staples JF, Henning RH, Bouma HR. Renal Mitochondrial Response to Low Temperature in Non-Hibernating and Hibernating Species. Antioxid Redox Signal 2017; 27:599-617. [PMID: 28322600 DOI: 10.1089/ars.2016.6705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,2 Division of Cardiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Maarten C Hardenberg
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Wendelinde F Kok
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Ate S Boerema
- 3 Groningen Institute for Evolutionary Life Sciences, University of Groningen , Groningen, the Netherlands .,4 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hannah V Carey
- 5 Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin , Madison, Wisconsin
| | - James F Staples
- 6 Department of Biology, University of Western Ontario , London, Canada
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,7 Department of Internal Medicine, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| |
Collapse
|
18
|
Inducing metabolic suppression in severe hemorrhagic shock: Pilot study results from the Biochronicity Project. J Trauma Acute Care Surg 2017; 81:1003-1011. [PMID: 27537510 DOI: 10.1097/ta.0000000000001235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Suspended animation-like states have been achieved in small animal models, but not in larger species. Inducing metabolic suppression and temporary oxygen independence could enhance survivability of massive injury. Based on prior analyses of key pathways, we hypothesized that phosphoinositol-3-kinase inhibition would produce metabolic suppression without worsening organ injury or systemic physiology. METHODS Twenty swine were studied using LY294002 (LY), a nonselective phosphoinositol-3-kinase inhibitor. Animals were assigned to trauma only (TO, n = 3); dimethyl sulfoxide only (DMSO, n = 4), LY drug only (LYO, n = 3), and drug + trauma (LY + T, n = 10) groups. Both trauma groups underwent laparotomy, 35% hemorrhage, severe ischemia/reperfusion injury, and protocolized resuscitation. Laboratory, physiologic, cytokine, and metabolic cart data were obtained. Histology of key end organs was also compared. RESULTS Baseline values were similar among the groups. Compared with the TO group, the LYO group had reversible decreases in heart rate, mean arterial pressure, cardiac output, oxygen consumption, and carbon dioxide production. Compared with TO, LY + T showed sustained decreases in heart rate (113 vs. 76, p = 0.03), mean arterial pressure (40 vs. 31 mm Hg, p = 0.02), and cardiac output (3.8 vs. 1.9 L/min, p = 0.05) at 6 hours. Metabolic parameters showed profound suppression in the LY + T group. Oxygen consumption in LY + T was lower than both TO (119 vs. 229 mL/min, p = 0.012) and LYO (119 vs. 225 mL/min, p = 0.014) at 6 hours. Similarly, carbon dioxide production was decreased at 6 hours in LY + T when compared with TO (114 vs. 191 mL/min, p = 0.043) and LYO (114 vs. 195 mL/min, p = 0.034) groups. There was no worsening of acidosis (lactate 6.4 vs. 8.3 mmol/L, p = 0.4) or other endpoints. Interleukin 6 (IL-6) showed a significant increase in LY + T when compared with TO at 6 hours (60.5 vs. 2.47, p = 0.043). Tumor necrosis factor α and IL-1β were decreased, and IL-10 increased in TO and LY + T at 6 hours. Markers of liver and kidney injury were no different between TO and LY + T groups at 6 hours. CONCLUSIONS Phosphoinositol-3-kinase inhibition produced metabolic suppression in healthy and injured swine without increasing end-organ injury or systemic physiologic markers and demonstrated prolonged efficacy in injured animals. Further study may lead to targeted therapies to prolong tolerance to hemorrhage and extend the "golden hour" for injured patients.
Collapse
|