1
|
Das S, Ghosh A, Karmakar V, Khawas S, Vatsha P, Roy KK, Behera PC. Cannabis effectiveness on immunologic potency of pulmonary contagion. J Basic Clin Physiol Pharmacol 2024; 35:129-142. [PMID: 38635412 DOI: 10.1515/jbcpp-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/17/2024] [Indexed: 04/20/2024]
Abstract
Respiratory illnesses and its repercussions are becoming more prevalent worldwide. It is necessary to research both innovative treatment and preventative techniques. Millions of confirmed cases and fatalities from the COVID-19 epidemic occurred over the previous two years. According to the review research, cannabinoids are a class of medicines that should be considered for the treatment of respiratory conditions. Cannabinoids and inhibitors of endocannabinoid degradation have illustrated advantageous anti-inflammatory, asthma, pulmonary fibrosis, and pulmonary artery hypotension in numerous studies (in vitro and in vivo). It has been also noted that CB2 receptors on macrophages and T-helper cells may be particularly triggered to lower inflammation in COVID-19 patients. Since the majority of lung tissue contains cannabinoid receptors, cannabis can be an effective medical tool for treating COVID-19 as well as pulmonary infections. Notably, CB2 and CB1 receptors play a major role in immune system modulation and anti-inflammatory activities. In this review, we put forth the idea that cannabis might be helpful in treating pulmonary contagion brought on by viral integration, such as that caused by SARS-CoV-2, haemophilus influenza type b, Streptococcus pneumoniae, influenza virus, and respiratory syncytial virus. Also, a detailed overview of CB receptors, intricate mechanisms, is highlighted connecting link with COVID-19 viral structural modifications along with molecular basis of CB receptors in diminishing viral load in pulmonary disorders supported through evident literature studies. Further, futuristic evaluations on cannabis potency through novel formulation development focusing on in vivo/in vitro systems can produce promising results.
Collapse
Affiliation(s)
- Sumana Das
- Department of Pharmaceutical Science and Technology, 28698 Birla Institute of Technology , Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Science and Technology, 28698 Birla Institute of Technology , Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Science and Technology, 28698 Birla Institute of Technology , Ranchi, India
| | - Sourav Khawas
- Department of Pharmaceutical Sciences, 521742 Jharkhand Rai University , Ranchi, India
| | - Piyush Vatsha
- Department of Pharmaceutical Sciences, 521742 Jharkhand Rai University , Ranchi, India
| | - Kishor Kumar Roy
- Department of Pharmaceutical Sciences, 521742 Jharkhand Rai University , Ranchi, India
| | - Padma Charan Behera
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Technology, MAKAUT university, Dubrajpur, Birbhum 731123, India
| |
Collapse
|
2
|
Kolousek A, Pak-Harvey E, Liu-Lam O, White M, Smith P, Henning F, Koval M, Levy JM. The Effects of Endogenous Cannabinoids on the Mammalian Respiratory System: A Scoping Review of Cyclooxygenase-Dependent Pathways. Cannabis Cannabinoid Res 2023; 8:434-444. [PMID: 37074668 PMCID: PMC10249741 DOI: 10.1089/can.2022.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.
Collapse
Affiliation(s)
| | | | - Oliver Liu-Lam
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia White
- Emory Libraries, Emory University, Atlanta, Georgia, USA
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M. Levy
- Department of Otolaryngology—Head & Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Bruinooge AJG, Mao R, Gottschalk TH, Srinathan SK, Buduhan G, Tan L, Halayko AJ, Kidane B. Identifying biomarkers of ventilator induced lung injury during one-lung ventilation surgery: a scoping review. J Thorac Dis 2022; 14:4506-4520. [PMID: 36524064 PMCID: PMC9745541 DOI: 10.21037/jtd-20-2301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/14/2022] [Indexed: 10/08/2023]
Abstract
Background Ventilator-induced lung injury (VILI) can occur as a result of mechanical ventilation to two lungs. Thoracic surgery often requires one-lung ventilation (OLV). The potential for VILI is likely higher in OLV. The impact of OLV on development of post-operative pulmonary complications is not well understood. We aimed to perform a scoping review to determine reliable biomarkers of VILI after OLV. Methods A scoping review was performed using Cochrane Collaboration methodology. We searched Medline, EMBASE and SCOPUS. Gray literature was searched. Studies of adult human or animal models without pre-existing lung damage exposed to OLV, with biomarker responses analyzed were included. Results After screening 5,613 eligible papers, 89 papers were chosen for full text review, with 29 meeting inclusion. Approximately half (52%, n=15) of studies were conducted in humans in an intra-operative setting. Bronchoalveolar lavage (BAL) & serum analyses with enzyme-linked immunosorbent assay (ELISA)-based assays were most commonly used. The majority of analytes were investigated by a single study. Of the analytes that were investigated by two or more studies (n=31), only 16 were concordant in their findings. Across all sample types and studies 84% (n=66) of the 79 inflammatory markers and 75% (n=6) of the 8 anti-inflammatory markers tested were found to increase. Half (48%) of all studies showed an increase in TNF-α or IL-6. Conclusions A scoping review of the state of the evidence demonstrated that candidate biomarkers with the most evidence and greatest reliability are general markers of inflammation, such as IL-6 and TNF-α assessed using ELISA assays. Studies were limited in the number of biomarkers measured concurrently, sample size, and studies using human participants. In conclusion these identified markers can potentially serve as outcome measures for studies on OLV.
Collapse
Affiliation(s)
- Allan J. G. Bruinooge
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | | | | | - Sadeesh K. Srinathan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
| | - Gordon Buduhan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
| | - Lawrence Tan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
| | - Andrew J. Halayko
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Kicman A, Pędzińska-Betiuk A, Kozłowska H. The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases. Eur J Pharmacol 2021; 911:174560. [PMID: 34648805 DOI: 10.1016/j.ejphar.2021.174560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.
Collapse
Affiliation(s)
- Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| |
Collapse
|
5
|
Bozkurt TE. Endocannabinoid System in the Airways. Molecules 2019; 24:E4626. [PMID: 31861200 PMCID: PMC6943521 DOI: 10.3390/molecules24244626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids and the mammalian endocannabinoid system is an important research area of interest and attracted many researchers because of their widespread biological effects. The significant immune-modulatory role of cannabinoids has suggested their therapeutic use in several inflammatory conditions. Airways are prone to environmental irritants and stimulants, and increased inflammation is an important process in most of the respiratory diseases. Therefore, the main strategies for treating airway diseases are suppression of inflammation and producing bronchodilation. The ability of cannabinoids to induce bronchodilation and modify inflammation indicates their importance for airway physiology and pathologies. In this review, the contribution of cannabinoids and the endocannabinoid system in the airways are discussed, and the existing data for their therapeutic use in airway diseases are presented.
Collapse
Affiliation(s)
- Turgut Emrah Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
6
|
Wu K, Xiu Y, Zhou P, Qiu Y, Li Y. A New Use for an Old Drug: Carmofur Attenuates Lipopolysaccharide (LPS)-Induced Acute Lung Injury via Inhibition of FAAH and NAAA Activities. Front Pharmacol 2019; 10:818. [PMID: 31379583 PMCID: PMC6659393 DOI: 10.3389/fphar.2019.00818] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI), characterized by a severe inflammatory process, is a complex syndrome that can lead to multisystem organ failure. Fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA) are two potential therapeutic targets for inflammation-related diseases. Herein, we identified carmofur, a 5-fluorouracil-releasing drug and clinically used as a chemotherapeutic agent, as a dual FAAH and NAAA inhibitor. In Raw264.7 macrophages, carmofur effectively reduced the mRNA expression of pro-inflammatory factors, including IL-1β, IL-6, iNOS, and TNF-α, and down-regulated signaling proteins of the nuclear transcription factor κB (NF-κB) pathway. Furthermore, carmofur significantly ameliorated the inflammatory responses and promoted resolution of pulmonary injury in lipopolysaccharide (LPS)-induced ALI mice. The pharmacological effects of carmofur were partially blocked by peroxisome proliferator-activated receptor-α (PPARα) antagonist MK886 and cannabinoid receptor 2 (CB2) antagonist SR144528, indicating that carmofur attenuated LPS-induced ALI in a PPARα- and CB2-dependent mechanism. Our study suggested that carmofur might be a novel therapeutic agent for ALI, and drug repurposing may provide us effective therapeutic strategies for ALI.
Collapse
Affiliation(s)
- Kangni Wu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yanghui Xiu
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Pan Zhou
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China.,Institute of Hematology, Medical College of Xiamem University, Xiamen, China
| | - Yan Qiu
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China.,Institute of Hematology, Medical College of Xiamem University, Xiamen, China
| | - Yuhang Li
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|