1
|
Abstract
Headaches and transient neurological symptoms that bear resemblances to clinical manifestations of migraine, especially migraine with aura, are common among patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) or cysteine-altering NOTCH3 genetic variants. However, according to the International Classification of Headache Disorders, Third Edition (ICHD-3), these patients should be diagnosed as headache attributed to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) rather than migraine with or without aura. Although transient focal neurological symptoms are often labeled as migraine aura, these symptoms are often atypical and complicated, and could not easily conform to the criteria for migraine with aura. Besides, the association between migraine and CADASIL could not be supported by population-based genetic studies, and cysteine-altering NOTCH3 genetic variants are not more common among patients with migraine with or without aura compared with non-migraine controls. In addition, the underlying pathophysiology may be different between migraine and CADASIL. Although increased cortical spreading depression (CSD) susceptibility in mice harboring a human pathogenic Notch3 variant is often regarded as supportive evidence for the association, CSD could been seen in conditions other than migraine, such as cerebral ischemia. The role of calcitonin gene-related peptide (CGRP), one of the most important molecules in migraine pathophysiology, in CADASIL patients with migraine-like manifestations is yet to be determined. To sum up, there remain uncertainties whether headache and migraine aura-like manifestations in CADASIL correspond to "ordinary" migraine with or without aura seen in routine clinical practice. Therefore, we are still a number of steps from a firm conclusion about the association between CADASIL and migraine.
Collapse
Affiliation(s)
- Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Yamamoto Y, Liao YC, Lee YC, Ihara M, Choi JC. Update on the Epidemiology, Pathogenesis, and Biomarkers of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. J Clin Neurol 2023; 19:12-27. [PMID: 36606642 PMCID: PMC9833879 DOI: 10.3988/jcn.2023.19.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disorder of the cerebral small blood vessels. It is caused by mutations in the NOTCH3 gene on chromosome 19, and more than 280 distinct pathogenic mutations have been reported to date. CADASIL was once considered a very rare disease with an estimated prevalence of 1.3-4.1 per 100,000 adults. However, recent large-scale genomic studies have revealed a high prevalence of pathogenic NOTCH3 variants among the general population, with the highest risk being among Asians. The disease severity and age at onset vary significantly even among individuals who carry the same NOTCH3 mutations. It is still unclear whether a significant genotype-phenotype correlation is present in CADASIL. The accumulation of granular osmiophilic material in the vasculature is a characteristic feature of CADASIL. However, the exact pathogenesis of CADASIL remains largely unclear despite various laboratory and clinical observations being made. Major hypotheses proposed so far have included aberrant NOTCH3 signaling, toxic aggregation, and abnormal matrisomes. Several characteristic features have been observed in the brain magnetic resonance images of patients with CADASIL, including subcortical lacunar lesions and white matter hyperintensities in the anterior temporal lobe or external capsule, which were useful in differentiating CADASIL from sporadic stroke in patients. The number of lacunes and the degree of brain atrophy were useful in predicting the clinical outcomes of patients with CADASIL. Several promising blood biomarkers have also recently been discovered for CADASIL, which require further research for validation.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jay Chol Choi
- Department of Neurology, Jeju National University, Jeju, Korea.,Institute for Medical Science, Jeju National University, Jeju, Korea
| |
Collapse
|
3
|
Wang YF, Liao YC, Tzeng YS, Chen SP, Lirng JF, Fuh JL, Chen WT, Lai KL, Lee YC, Wang SJ. Mutation screening and association analysis of NOTCH3 p.R544C in patients with migraine with or without aura. Cephalalgia 2022; 42:888-898. [PMID: 35302383 DOI: 10.1177/03331024221080891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The role of the NOTCH3 p.R544C variant, the predominant variant of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in multiple East Asian regions, in migraine is unknown. METHODS Migraine patients (n = 2,884) (2,279F/605M, mean age 38.8 ± 11.7 years), including 324 (11.2%) with migraine with aura, were prospectively enrolled by headache specialists according to the International Classification of Headache Disorders criteria. These patients and 3,502 population controls free of stroke, dementia, and headache were genotyped for NOTCH3 p.R544C by TaqMan genotyping assay or Axiom Genome-Wide TWB 2.0 Array. Clinical manifestations and brain magnetic resonance images were examined and compared between migraine patients with and without NOTCH3 p.R544C. RESULTS Thirty-two migraine patients (1.1%) and 36 controls (1.0%) harbored the p.R544C variant, and the percentages were comparable among migraine patients without and with aura, and controls (1.2%, vs. 0.6% vs. 1.0%, p = 0.625). Overall, migraine patients with and without the p.R544C variant had similar percentages of migraine with aura, headache characteristics, frequencies and disabilities. However, those with p.R544C were less likely to have pulsatile headaches (50.0% vs. 68.2%, p = 0.028), and more likely to have moderate to severe white matter hyperintensities in the external capsule (18.8% vs. 1.2%, p = 0.006) and anterior temporal lobe (12.5% vs. 0%, p = 0.008). CONCLUSIONS Our findings suggest that NOTCH3 p.R544C does not increase the risk of migraine with aura, or migraine as a whole, and generally does not alter clinical manifestations of migraine. The role of NOTCH3 variants, as well as potential influences from ethnicity or modifier genes, in migraine needs to be further clarified.
Collapse
Affiliation(s)
- Yen-Feng Wang
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Shiang Tzeng
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiing-Feng Lirng
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Shindo A, Tabei KI, Taniguchi A, Nozaki H, Onodera O, Ueda A, Ando Y, Urabe T, Kimura K, Kitagawa K, Hanyu H, Hirano T, Wakita H, Fukuyama H, Kagimura T, Miyamoto Y, Takegami M, Saito S, Watanabe-Hosomi A, Mizuta I, Ihara M, Mizuno T, Tomimoto H. A Nationwide Survey and Multicenter Registry-Based Database of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy in Japan. Front Aging Neurosci 2020; 12:216. [PMID: 32765252 PMCID: PMC7381163 DOI: 10.3389/fnagi.2020.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 01/16/2023] Open
Abstract
Objectives Clinical characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) include migraine, recurrent stroke, white matter lesions, and vascular dementia. CADASIL is one of the most common hereditary cerebral small vessel diseases. Clinical presentation of CADASIL varies and a racial gap may exist between the Asian and Caucasian populations. This is the first nationwide epidemiological survey which aimed to elucidate the clinical features of CADASIL in Japan. Moreover, the registration database of CADASIL was constructed. Methods Subjects included CADASIL patients who visited the hospitals (totally 1,448 hospitals) certified by the Japanese Society of Neurology and/or Japan Stroke Society in 2016. This study consisted of a two-step survey; patients with CADASIL were identified genetically by the first questionnaire, and their clinical features were assessed by the second questionnaire. Selected 6 hospitals registered the data of all CADASIL patients using a Research Electronic Data Capture (REDCap) system for the second questionnaire. Results Based on the criteria, 88 patients (50 male and 38 female) with CADASIL were enrolled. The mean age of symptom onset was 49.5 years. Sixteen (18.2%) patients had an elderly onset (>60 years). Thirteen patients (13.6%) had history of migraine with aura and 33 patients (37.5%) had vascular risk factor(s). From among the 86 patients who were examined using magnetic resonance imaging, abnormal deep white matter lesions were detected in 85 patients (98.8%), WMLs extending to anterior temporal pole in 73 patients (84.9%), and cerebral microbleeds in 41 patients (47.7%). Anti-platelet therapy was received by 65 patients (73.9%). Thirty-eight patients (43.2%) underwent treatment with lomerizine hydrochloride. Thirty-four different mutations of NOTCH3 were found in exons 2, 3, 4, 5, 6, 8, 11, 14, and 19. Most of the mutations existed in exon 4 (n = 44, 60.3%). The prevalence rate of CADASIL was 1.20 to 3.58 per 100,000 adults in Japan. Conclusion This questionnaire-based study revealed clinical features and treatment status in Japanese CADASIL patient, although it may not be an exhaustive search. We have constructed the REDCap database for these CADASIL patients.
Collapse
Affiliation(s)
- Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ken-Ichi Tabei
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroaki Nozaki
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Amyloidosis Research, Nagasaki International University, Nagasaki, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Kazumi Kimura
- Department of Neurology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Teruyuki Hirano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Tokyo, Japan
| | - Hideaki Wakita
- Department of Internal Medicine, Nanakuri Memorial Hospital, Fujita Health University, Tsu, Japan
| | - Hidenao Fukuyama
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Tatsuo Kagimura
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yoshihiro Miyamoto
- Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Misa Takegami
- Department of Preventive Medicine and Epidemiologic Informatics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akiko Watanabe-Hosomi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
5
|
Okada T, Washida K, Irie K, Saito S, Noguchi M, Tomita T, Koga M, Toyoda K, Okazaki S, Koizumi T, Mizuta I, Mizuno T, Ihara M. Prevalence and Atypical Clinical Characteristics of NOTCH3 Mutations Among Patients Admitted for Acute Lacunar Infarctions. Front Aging Neurosci 2020; 12:130. [PMID: 32477100 PMCID: PMC7240022 DOI: 10.3389/fnagi.2020.00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/20/2020] [Indexed: 01/12/2023] Open
Abstract
Objectives: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary small vessel disease, with reported frequencies of 2-5/100,000 individuals. Recently, it has been reported that some patients with NOTCH3 gene mutations show atypical clinical symptoms of CADASIL. Assuming that CADASIL is underdiagnosed in some cases of lacunar infarction, this study was designed to examine the prevalence of NOTCH3 gene mutations in the patients at highest risk who were admitted for lacunar infarctions. Methods: From January 2011 to April 2018, 1,094 patients with lacunar infarctions were admitted to our hospital, of whom 31 patients without hypertension but with white matter disease (Fazekas scale 2 or 3) were selected and genetically analyzed for NOTCH3 gene mutations (Phase 1). Furthermore, 54 patients, who were 60 years or younger, were analyzed for NOTCH3 mutations (Phase 2). NOTCH3 exons 2–24, which encode the epidermal growth factor-like repeat domain of the NOTCH3 receptor, were analyzed for mutations by direct sequencing of genomic DNA. Results: Three patients presented NOTCH3 p.R75P mutations: two in the Phase 1 and one in the Phase 2 cohort. Among patients aged 60 years or younger and those without hypertension but with moderate-to-severe white matter lesions, the carrier frequency of p.R75P was 3.5% (3/85), which was significantly higher than that in the Japanese general population (4.7KJPN) (odds ratio [95% CI] = 58.2 [11.6–292.5]). All three patients with NOTCH3 mutations had family histories of stroke, and the average patient age was 51.3 years. All three patients also showed white matter lesions in the external capsule but not in the temporal pole. The CADASIL and CADASIL scale-J scores of the three patients were 6, 17, 7 (mean, 10.0) and 13, 20, 10 (mean, 14.3), respectively. Conclusion: Among patients hospitalized for lacunar infarctions, the p.R75P prevalence may be higher than previously estimated. The NOTCH3 p.R75P mutation may be underdiagnosed in patients with early-onset lacunar infarctions due to the atypical clinical and neuroimaging features of CADASIL. Early-onset, presence of family history of stroke, external capsule lesions, and absence of hypertension may help predict underlying NOTCH3 mutations despite no temporal white matter lesions.
Collapse
Affiliation(s)
- Takashi Okada
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenichi Irie
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Michio Noguchi
- NCVC Biobank, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tsutomu Tomita
- NCVC Biobank, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shuhei Okazaki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Koizumi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
6
|
Lee YC, Chung CP, Chang MH, Wang SJ, Liao YC. NOTCH3 cysteine-altering variant is an important risk factor for stroke in the Taiwanese population. Neurology 2019; 94:e87-e96. [PMID: 31792094 DOI: 10.1212/wnl.0000000000008700] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/27/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that the prevalence and clinical effect of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) have been underestimated in Asian populations. METHODS The Taiwan Biobank, containing 1,517 Taiwanese genome sequences, was queried for pathogenic NOTCH3 cysteine-altering mutations. NOTCH3 mutations identified in the reference population were genotyped in 7,038 stroke- and dementia-free individuals and 800 patients with ischemic stroke. NOTCH3 genotyping, clinical manifestations, and the severity of white matter lesions on MRI were compared between the 2 groups. RESULTS Three cysteine-altering NOTCH3 variants (p.R544C, p.C853Y, and p.C884Y) were identified from the Taiwan Biobank. We confirmed that the NOTCH3 p.R544C mutation was present in a significant number of individuals in Taiwan, including 60 of the 7,038 healthy controls (0.9%), 17 of the 800 patients with ischemic stroke (2.1%), and 16 of the 245 patients with small vessel occlusion (SVO) stroke (6.5%). The other 2 cysteine-altering mutations were rarely detected. After adjusting for vascular risk factors, harboring the p.R544C variant resulted in a 3.40-fold increased risk for overall stroke and an 11.05-fold increased risk for SVO stroke (p = 0.0001 and 3.9 × 10-10, respectively). Three symptom-free individuals carrying the p.R544C mutation had extensive leukoencephalopathy typical of CADASIL at age 59, 66, and 67, suggesting that p.R544C-related CADASIL could remain subclinical at advanced age. CONCLUSION The NOTCH3 p.R544C variant is an important risk factor for SVO stroke in Taiwan. Phenotypic variation among individuals carrying a NOTCH3 mutation indicates the existence of disease-modifying factors in CADASIL.
Collapse
Affiliation(s)
- Yi-Chung Lee
- From the Department of Neurology (Y.-C. Lee, C.-P.C., S.-J.W., Y.-C. Liao), Taipei Veterans General Hospital; Department of Neurology (Y.-C. Lee, C.-P.C., M.-H.C., S.-J.W., Y.-C. Liao) and Brain Research Center (Y.-C. Lee, S.-J.W., Y.-C. Liao), National Yang-Ming, University School of Medicine, Taipei; and Department of Neurology (M.-H.C.), Taichung Veterans General Hospital, Taiwan
| | - Chih-Ping Chung
- From the Department of Neurology (Y.-C. Lee, C.-P.C., S.-J.W., Y.-C. Liao), Taipei Veterans General Hospital; Department of Neurology (Y.-C. Lee, C.-P.C., M.-H.C., S.-J.W., Y.-C. Liao) and Brain Research Center (Y.-C. Lee, S.-J.W., Y.-C. Liao), National Yang-Ming, University School of Medicine, Taipei; and Department of Neurology (M.-H.C.), Taichung Veterans General Hospital, Taiwan
| | - Ming-Hong Chang
- From the Department of Neurology (Y.-C. Lee, C.-P.C., S.-J.W., Y.-C. Liao), Taipei Veterans General Hospital; Department of Neurology (Y.-C. Lee, C.-P.C., M.-H.C., S.-J.W., Y.-C. Liao) and Brain Research Center (Y.-C. Lee, S.-J.W., Y.-C. Liao), National Yang-Ming, University School of Medicine, Taipei; and Department of Neurology (M.-H.C.), Taichung Veterans General Hospital, Taiwan
| | - Shuu-Jiun Wang
- From the Department of Neurology (Y.-C. Lee, C.-P.C., S.-J.W., Y.-C. Liao), Taipei Veterans General Hospital; Department of Neurology (Y.-C. Lee, C.-P.C., M.-H.C., S.-J.W., Y.-C. Liao) and Brain Research Center (Y.-C. Lee, S.-J.W., Y.-C. Liao), National Yang-Ming, University School of Medicine, Taipei; and Department of Neurology (M.-H.C.), Taichung Veterans General Hospital, Taiwan
| | - Yi-Chu Liao
- From the Department of Neurology (Y.-C. Lee, C.-P.C., S.-J.W., Y.-C. Liao), Taipei Veterans General Hospital; Department of Neurology (Y.-C. Lee, C.-P.C., M.-H.C., S.-J.W., Y.-C. Liao) and Brain Research Center (Y.-C. Lee, S.-J.W., Y.-C. Liao), National Yang-Ming, University School of Medicine, Taipei; and Department of Neurology (M.-H.C.), Taichung Veterans General Hospital, Taiwan.
| |
Collapse
|
7
|
Tang SC, Chen YR, Chi NF, Chen CH, Cheng YW, Hsieh FI, Hsieh YC, Yeh HL, Sung PS, Hu CJ, Chern CM, Lin HJ, Lien LM, Peng GS, Chiou HY, Jeng JS. Prevalence and clinical characteristics of stroke patients with p.R544C NOTCH3 mutation in Taiwan. Ann Clin Transl Neurol 2018; 6:121-128. [PMID: 30656190 PMCID: PMC6331316 DOI: 10.1002/acn3.690] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
Objective Features of cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL) caused by NOTCH3 mutations vary between ethnicities and regions. In Taiwan, more than 70% of CADASIL patients carry the mutation hot spot of p.R544C. We investigated the prevalence of NOTCH3 p.R544C mutation in stroke patients in Taiwan. Methods This prospective, multicenter study recruited acute stroke patients within 10 days of symptom onset. The p.R544C mutation was identified by polymerase chain reaction with confronting two‐pair primers and sequencing. Clinical parameters, vascular risk factors, stroke subtypes, and stroke outcomes were analyzed. Results Of the 1970 stroke patients (mean age 61.1 ± 13.6 years, male 69.5%) included, 1705 (86.5%) had ischemic stroke and 265 (13.5%) had intracerebral hemorrhage. The prevalence of p.R544C in the study population was 2.8% (95% confidence interval [CI] = 2.1–3.5%). The prevalence was highest in patients with small vessel occlusion type of ischemic stroke (5.6%), followed by intracerebral hemorrhage (5.3%), and infarct of undetermined etiology (2.7%), and was low in patients with cardioembolism (0.8%) and large artery atherosclerosis (0.7%). All p.R544C patients with intracerebral hemorrhage were nonlobar hemorrhage. Sibling history of stroke (odds ratio [OR] = 4.50, 95% CI = 1.67–12.14 in ischemic stroke; OR = 6.03, 95% CI = 1.03–35.47 in intracerebral hemorrhage, respectively) and small vessel occlusion (OR, 4.03, 95% CI, 1.26–12.92) were significantly associated with p.R544C. Interpretation p.R544C NOTCH3 mutation is underdiagnosed in stroke patients in Taiwan, especially in those with small vessel occlusion and sibling history of stroke.
Collapse
Affiliation(s)
- Sung-Chun Tang
- Stroke Center and Department of Neurology National Taiwan University Hospital Taipei Taiwan
| | - Yih-Ru Chen
- School of Public Health College of Public Health Taipei Medical University Taipei Taiwan
| | - Nai-Fang Chi
- Department of Neurology Taipei Medical University Hospital and Shuang Ho Hospital Taipei Taiwan
| | - Chih-Hao Chen
- Stroke Center and Department of Neurology National Taiwan University Hospital Taipei Taiwan
| | - Yu-Wen Cheng
- Department of Neurology National Taiwan University Hospital Hsin-Chu Branch Hsin-Chu Taiwan
| | - Fang-I Hsieh
- School of Public Health College of Public Health Taipei Medical University Taipei Taiwan
| | - Yi-Chen Hsieh
- The PhD Program for Neural Regenerative Medicine College of Medical Science and Technology Taipei Medical University Taipei Taiwan
| | - Hsu-Ling Yeh
- Department of Neurology Shin Kong Wu Ho-Su Memorial Hospital Taipei Taiwan
| | - Pi-Shan Sung
- Department of Neurology National Cheng Kung University Hospital Tainan Taiwan
| | - Chaur-Jong Hu
- Department of Neurology Taipei Medical University Hospital and Shuang Ho Hospital Taipei Taiwan
| | - Chang-Ming Chern
- Department of Neurology Taipei Veteran General Hospital Taipei Taiwan
| | - Huey-Juan Lin
- Department of Neurology Chi-Mei Medical Center Tainan Taiwan
| | - Li-Ming Lien
- Department of Neurology Shin Kong Wu Ho-Su Memorial Hospital Taipei Taiwan
| | - Giia-Sheun Peng
- Department of Neurology Tri-Service General Hospital Tainan Taiwan
| | - Hung-Yi Chiou
- School of Public Health College of Public Health Taipei Medical University Taipei Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|
8
|
Di Donato I, Bianchi S, De Stefano N, Dichgans M, Dotti MT, Duering M, Jouvent E, Korczyn AD, Lesnik-Oberstein SAJ, Malandrini A, Markus HS, Pantoni L, Penco S, Rufa A, Sinanović O, Stojanov D, Federico A. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Med 2017; 15:41. [PMID: 28231783 PMCID: PMC5324276 DOI: 10.1186/s12916-017-0778-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common and best known monogenic small vessel disease. Here, we review the clinical, neuroimaging, neuropathological, genetic, and therapeutic aspects based on the most relevant articles published between 1994 and 2016 and on the personal experience of the authors, all directly involved in CADASIL research and care. We conclude with some suggestions that may help in the clinical practice and management of these patients.
Collapse
Affiliation(s)
- Ilaria Di Donato
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany
| | - Eric Jouvent
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1161 INSERM, F-75205, Paris, France.,Department of Neurology, AP-HP, Lariboisière Hospital, F-75475, Paris, France.,DHU NeuroVasc Sorbonne Paris Cité, Paris, France
| | - Amos D Korczyn
- Department of Neurology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Saskia A J Lesnik-Oberstein
- Department of Clinical Genetics, K5-R Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Leonardo Pantoni
- NEUROFARBA Department, Neuroscience section, Largo Brambilla 3, 50134, Florence, Italy
| | - Silvana Penco
- Medical Genetic Unit, Department of Laboratory Medicine, Niguarda Hospital, Milan, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Osman Sinanović
- Department of Neurology, University Clinical Center Tuzla, School of Medicine University of Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| | - Dragan Stojanov
- Faculty of Medicine, University of Nis, Bul. Dr. Zorana Djindjica 81, Nis, 18000, Serbia
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|
9
|
Yuan X, Dong Z. The Association Between the Genetic Variants of the NOTCH3 Gene and Ischemic Stroke Risk. Med Sci Monit 2016; 22:3910-3914. [PMID: 27770607 PMCID: PMC5081240 DOI: 10.12659/msm.896297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Ischemic stroke (IS) is a leading cause of disability and death and NOTCH3 as a gene related with cardiac-cerebral vascular disease plays a vital role in IS development. However, the reports about the effect of genetic variants in NOTCH3 gene on IS are still few. Material/Methods In order to explore the association between NOTCH3 polymorphisms and IS, 134 patients with IS and 115 controls were enrolled in this case-control study. Polymerase chain reaction was used to do the genotyping of polymorphisms. The χ2 test was performed to evaluate Hardy-Weinberg equilibrium (HWE) in the control group and calculate odds ratio (OR) with corresponding 95% confidence interval (CI) which represented the association intensity of NOTCH3 gene polymorphisms and IS risk. Results The genotype frequencies in the control group all confirmed to HWE. TT genotype of 381C>T was associated significantly with IS risk (OR=2.441, 95%CI=1.021–5.837). TC, CC mutant genotypes of 1735T>C had higher frequencies in cases than controls and the difference was significant (P=0.013, 0.041); further, its C allele also increased 0.722 times risk in the case group than controls (OR=1.722, 95%CI=1.166–2.541). Conclusions NOTCH3 381C>T and 1735T>C polymorphisms were associated with IS and might be the risk factors for IS development, but not NOTCH3 605C>T polymorphism.
Collapse
Affiliation(s)
- Xiaoling Yuan
- Department of Neurology, People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| | - Zifeng Dong
- Department of Anesthesiology, People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
10
|
He D, Chen D, Li X, Hu Z, Yu Z, Wang W, Luo X. The comparisons of phenotype and genotype between CADASIL and CADASIL-like patients and population-specific evaluation of CADASIL scale in China. J Headache Pain 2016; 17:55. [PMID: 27206574 PMCID: PMC4875019 DOI: 10.1186/s10194-016-0646-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/14/2016] [Indexed: 11/16/2022] Open
Abstract
Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common form of hereditary stroke disorder caused by mutations in the NOTCH3 gene. Although CADASIL scale is a widely used tool to screen clinically suspected CADASIL patients, the differential effects of this scale in various populations remain unknown. Methods 92 CADASIL-like patients and 24 CADASIL patients were selected based on CADASIL scale and gene tests. The clinical, genetic and radiological characteristics were analyzed. Results Based on the CADASIL scale, we first screened 116 suspected CADASIL patients, and detected 20 mutations in 24 CADASIL-patients (Specificity: 20.69 %). Surprisingly, we found that transient ischemic attack/stroke, migraine, cognitive decline, psychiatric disturbances and early onset age in CADASIL scale showed no differences between the CADASIL and the CADASIL-like patients (p > 0.05). Instead, recurrent cerebral ischemic events (58.33 %, p = 0.028) and positive family histories (p < 0.05) were more frequently observed in CADASIL patients. Moreover, compared with CADASIL-like patients (21.74 %), CADASIL patients demonstrated higher percentage of temporal pole involvements (58.33 %, p = 0.001), but not the external capsule involvements (66.67 %, p = 0.602), in MRI imaging. Further, we found that vascular risk factors could occur in both CADASIL patients and CADASIL-like patients, and therefore could not be used as the markers to differentiate the two groups in our study (p > 0.05). By performing DSA analysis, we for the first time identified dysplasia of cerebral blood vessels in CADASIL patients, which were detected more frequently in CADASIL patients (41.67 %) in comparison with CADASIL-like patients (8.69 %, p <0.01). Conclusion Our data suggested that the efficacy of CADASIL scale to diagnose the disease varied with specific populations. Recurrent cerebral ischemic events, temporal pole involvements (but not the external capsule) in MRI imaging and dysplasia of cerebral blood vessels in DSA may be the new potential risk factors of the CADASIL scale suitable for Chinese patients. Gene testing by encephalopathy gene panel is expected to improve the accuracy of CADASIL differential diagnosis and increase the understanding of this disease in the future.
Collapse
Affiliation(s)
- Dan He
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.,Department of Neurology, The first affiliated hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daiqi Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xuefei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, The first affiliated hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Kilarski LL, Rutten-Jacobs LCA, Bevan S, Baker R, Hassan A, Hughes DA, Markus HS. Prevalence of CADASIL and Fabry Disease in a Cohort of MRI Defined Younger Onset Lacunar Stroke. PLoS One 2015; 10:e0136352. [PMID: 26305465 PMCID: PMC4549151 DOI: 10.1371/journal.pone.0136352] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/01/2015] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), caused by mutations in the NOTCH3 gene, is the most common monogenic disorder causing lacunar stroke and cerebral small vessel disease (SVD). Fabry disease (FD) due to mutations in the GLA gene has been suggested as an underdiagnosed cause of stroke, and one feature is SVD. Previous studies reported varying prevalence of CADASIL and FD in stroke, likely due to varying subtypes studied; no studies have looked at a large cohort of younger onset SVD. We determined the prevalence in a well-defined, MRI-verified cohort of apparently sporadic patients with lacunar infarct. Methods Caucasian patients with lacunar infarction, aged ≤70 years (mean age 56.7 (SD8.6)), were recruited from 72 specialist stroke centres throughout the UK as part of the Young Lacunar Stroke DNA Resource. Patients with a previously confirmed monogenic cause of stroke were excluded. All MRI’s and clinical histories were reviewed centrally. Screening was performed for NOTCH3 and GLA mutations. Results Of 994 subjects five had pathogenic NOTCH3 mutations (R169C, R207C, R587C, C1222G and C323S) all resulting in loss or gain of a cysteine in the NOTCH3 protein. All five patients had confluent leukoaraiosis (Fazekas grade ≥2). CADASIL prevalence overall was 0.5% (95% CI 0.2%-1.1%) and among cases with confluent leukoaraiosis 1.5% (95% CI 0.6%-3.3%). No classic pathogenic FD mutations were found; one patient had a missense mutation (R118C), associated with late-onset FD. Conclusion CADASIL cases are rare and only detected in SVD patients with confluent leukoaraiosis. No definite FD cases were detected.
Collapse
Affiliation(s)
- Laura L. Kilarski
- Stroke and Dementia Research Centre, St George’s University of London, London, United Kingdom
| | - Loes C. A. Rutten-Jacobs
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Steve Bevan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Rob Baker
- Department of Haematology, Lysosomal Storage Disorders Unit, Royal Free Hospital and University College Medical School, London, United Kingdom
| | - Ahamad Hassan
- Department of neurology, Leeds General Infirmary, Leeds, United Kingdom
| | - Derralynn A. Hughes
- Department of Haematology, Lysosomal Storage Disorders Unit, Royal Free Hospital and University College Medical School, London, United Kingdom
| | - Hugh S. Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
12
|
Fernández A, Gómez J, Alonso B, Iglesias S, Coto E. A Next-Generation Sequencing of the NOTCH3 and HTRA1 Genes in CADASIL Patients. J Mol Neurosci 2015; 56:613-6. [PMID: 25929831 DOI: 10.1007/s12031-015-0560-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022]
Abstract
Our purpose was to develop a next-generation sequencing procedure to search for NOTCH3 and HTRA1 mutations in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) features. A total of 70 patients were sequenced with semiconductor chips in an Ion Torrent Personal Genome Machine. The putative mutations were confirmed through Sanger sequencing of the corresponding patient. Six patients had a typical cysteine-involving NOTCH3 mutation. A new non-reported NOTCH3 variant (p.Pro2178Ser) was found in two patients. One patient was heterozygous for a non-reported HTRA1 variant, likely non-pathogenic (p.Ser139Ala). We found a typical NOTCH3 mutation in 9 % of the patients. None of the patients had HTRA1 variants with likely pathogenic effect. The next-generation sequencing (NGS) procedure here described would facilitate the rapid and cost-effective screening of large cohorts of CADASIL patients.
Collapse
Affiliation(s)
- Angela Fernández
- Genética-Laboratorio de Medicina, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | | | | | | | | |
Collapse
|
13
|
Yoon CW, Kim YE, Seo SW, Ki CS, Choi SH, Kim JW, Na DL. NOTCH3 variants in patients with subcortical vascular cognitive impairment: a comparison with typical CADASIL patients. Neurobiol Aging 2015; 36:2443.e1-7. [PMID: 26002683 DOI: 10.1016/j.neurobiolaging.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/24/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022]
Abstract
Although cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is thought to be a common form of hereditary subcortical vascular cognitive impairment (SVCI), there is little data on the frequency of NOTCH3 variants in SVCI patients. We prospectively screened for NOTCH3 variants in consecutive SVCI patients who underwent brain magnetic resonance imaging and amyloid positron emission tomography as well as sequence analysis for mutational hotspots in the NOTCH3 gene. Among 117 patients with SVCI, 16 patients had either known mutations or variants of unknown significance in the NOTCH3 gene. There were no differences in clinical and neuroimaging features between SVCI patients with and without NOTCH3 variants, only except for a higher number of deep microbleeds in SVCI patients with NOTCH3 variants. Our findings suggest that there is a phenotypic entity of NOTCH3 variant that is similar to that of sporadic SVCI but not of typical CADASIL. Notably, 2 SVCI patients with NOTCH3 mutations showed significant amyloid burden, which challenges the prevailing concept that CADASIL represents the genetic model of pure small vessel disease.
Collapse
Affiliation(s)
- Cindy W Yoon
- Department of Neurology, Inha University School of Medicine, Incheon, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Neuroscience Center, Samsung Medical Center, Seoul, Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea; Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Yin X, Wu D, Wan J, Yan S, Lou M, Zhao G, Zhang B. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: Phenotypic and mutational spectrum in patients from mainland China. Int J Neurosci 2014; 125:585-92. [PMID: 25105908 DOI: 10.3109/00207454.2014.951929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS To analyze the NOTCH3 gene mutations in patients from mainland China clinically suspected to have cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and evaluate large intracranial arteries in CADASIL patients. METHODS We performed clinical, neuroimaging and NOTCH3 gene (exons 2-23) examinations in 47 subjects from 34 families. Large intracranial arteries were assessed using magnetic resonance angiography (MRA) in 19 cases with NOTCH3 gene variants. RESULTS Screening of exons 3 and 4 identified six different known mutations in eight families and two novel mutations in two families. Further screening of the remaining exons identified p.R1175W, a variant of unknown significance. The incidence of NOTCH3 mutations was 29.4% (10/34). Five cases with NOTCH3 mutations showed intracranial atherosclerosis. One patient developed cerebral infarction due to left middle cerebral artery occlusion (M2 segment). CONCLUSIONS The NOTCH3 mutation spectrum in our group was diverse and consistent with those in Caucasians but differed from those in Korea and Taiwan. The screening strategy used in Caucasian populations can be applied to mainland Chinese patients. Atherosclerosis of the large intracranial arteries involvement does not exclude CADASIL diagnosis.
Collapse
Affiliation(s)
- Xinzhen Yin
- 1Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | | | | | | | | | | | | |
Collapse
|
15
|
Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H. CADASIL and CARASIL. Brain Pathol 2014; 24:525-44. [PMID: 25323668 PMCID: PMC8029192 DOI: 10.1111/bpa.12181] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
CADASIL and CARASIL are hereditary small vessel diseases leading to vascular dementia. CADASIL commonly begins with migraine followed by minor strokes in mid-adulthood. Dominantly inherited CADASIL is caused by mutations (n > 230) in NOTCH3 gene, which encodes Notch3 receptor expressed in vascular smooth muscle cells (VSMC). Notch3 extracellular domain (N3ECD) accumulates in arterial walls followed by VSMC degeneration and subsequent fibrosis and stenosis of arterioles, predominantly in cerebral white matter, where characteristic ischemic MRI changes and lacunar infarcts emerge. The likely pathogenesis of CADASIL is toxic gain of function related to mutation-induced unpaired cysteine in N3ECD. Definite diagnosis is made by molecular genetics but is also possible by electron microscopic demonstration of pathognomonic granular osmiophilic material at VSMCs or by positive immunohistochemistry for N3ECD in dermal arteries. In rare, recessively inherited CARASIL the clinical picture and white matter changes are similar as in CADASIL, but cognitive decline begins earlier. In addition, gait disturbance, low back pain and alopecia are characteristic features. CARASIL is caused by mutations (presently n = 10) in high-temperature requirement. A serine peptidase 1 (HTRA1) gene, which result in reduced function of HTRA1 as repressor of transforming growth factor-β (TGF β) -signaling. Cerebral arteries show loss of VSMCs and marked hyalinosis, but not stenosis.
Collapse
Affiliation(s)
- Saara Tikka
- Protein Chemistry Unit, Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
| | - Marc Baumann
- Protein Chemistry Unit, Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
| | - Maija Siitonen
- Department of Medical Biochemistry and Genetics, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Petra Pasanen
- Department of Medical Biochemistry and Genetics, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Minna Pöyhönen
- Department of Clinical GeneticsHelsinki University Hospital, HUSLABHelsinkiFinland
| | - Liisa Myllykangas
- Department of PathologyHaartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - Matti Viitanen
- Turku City HospitalTurkuFinland
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Toshio Fukutake
- Department of NeurologyKameda Medical CenterKamogawaChibaJapan
| | - Emmanuel Cognat
- INSERMU1161ParisFrance
- Université Paris DiderotSorbonne Paris CitéUMRS 1161ParisFrance
| | - Anne Joutel
- INSERMU1161ParisFrance
- Université Paris DiderotSorbonne Paris CitéUMRS 1161ParisFrance
| | - Hannu Kalimo
- Department of PathologyHaartman InstituteUniversity of HelsinkiHelsinkiFinland
- Institute of BiomedicineDepartment of Forensic MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
16
|
Ince B, Benbir G, Siva A, Saip S, Utku U, Celik Y, Necioglu-Orken D, Ozturk S, Afsar N, Aktan S, Asil T, Bakac G, Ekmekci H, Gokce M, Krespi Y, Midi I, Varlibas F, Citci-Yalcinkaya B, Goksan B, Uluduz D, Uyguner O. Clinical and radiological features in CADASIL and NOTCH3-negative patients: a multicenter study from Turkey. Eur Neurol 2014; 72:125-31. [PMID: 25095812 DOI: 10.1159/000360530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/09/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The diversity of clinical presentation and neuroimaging findings of CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) from different regions of the world has not yet been studied in depth. Here we investigated the variability of clinical, radiological and genetic data of 48 patients analyzed for NOTCH3 mutation in Turkey. METHODS Clinical evaluation was made according to a preformed questionnaire. Cranial neuroimaging findings were determined on the basis of T1, T2, FLAIR and proton-density magnetic resonance scans. For genetic analysis, polymerase chain reaction was performed with primers flanking exons 2-6 and 11 of NOTCH3 gene. RESULTS Twenty-five patients (52.1%) were diagnosed as CADASIL with NOTCH3 mutation, while 23 patients (47.9%) had no mutation (NOTCH3-negative patients). The mean age and age at stroke onset were lower in male CADASIL patients (p < 0.03). A family history of migraine (p = 0.012), stroke (p < 0.001), recurrent strokes (p = 0.020) and dementia (p = 0.012) was more common in CADASIL patients. Temporal pole involvement was more common in CADASIL patients (p = 0.004). CONCLUSION It is of clinical importance to identify the heterogeneity of CADASIL from different countries due to a low correlation of clinical and radiological data with respect to NOTCH3 mutation.
Collapse
Affiliation(s)
- Birsen Ince
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|