1
|
Huang X, Wu Z, Liu Z, Liu D, Huang D, Long Y. Acute Effect of Betel Quid Chewing on Brain Network Dynamics: A Resting-State Functional Magnetic Resonance Imaging Study. Front Psychiatry 2021; 12:701420. [PMID: 34504445 PMCID: PMC8421637 DOI: 10.3389/fpsyt.2021.701420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Betel quid (BQ) is one of the most popular addictive substances in the world. However, the neurophysiological mechanism underlying BQ addiction remains unclear. This study aimed to investigate whether and how BQ chewing would affect brain function in the framework of a dynamic brain network model. Resting-state functional magnetic resonance imaging scans were collected from 24 male BQ-dependent individuals and 26 male non-addictive healthy individuals before and promptly after chewing BQ. Switching rate, a measure of temporal stability of functional brain networks, was calculated at both global and local levels for each scan. The results showed that BQ-dependent and healthy groups did not significantly differ on switching rate before BQ chewing (F = 0.784, p = 0.381, analysis of covariance controlling for age, education, and head motion). After chewing BQ, both BQ-dependent (t = 2.674, p = 0.014, paired t-test) and healthy (t = 2.313, p = 0.029, paired t-test) individuals showed a significantly increased global switching rate compared to those before chewing BQ. Significant corresponding local-level effects were observed within the occipital areas for both groups, and within the cingulo-opercular, fronto-parietal, and cerebellum regions for BQ-dependent individuals. Moreover, in BQ-dependent individuals, switching rate was significantly correlated with the severity of BQ addiction assessed by the Betel Quid Dependence Scale scores (Spearman's rho = 0.471, p = 0.020) before BQ chewing. Our study provides preliminary evidence for the acute effects of BQ chewing on brain functional dynamism. These findings may provide insights into the neural mechanisms of substance addictions.
Collapse
Affiliation(s)
- Xiaojun Huang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Psychology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Zhipeng Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dayi Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danqing Huang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yicheng Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Lugtmeijer S, Lammers NA, de Haan EHF, de Leeuw FE, Kessels RPC. Post-Stroke Working Memory Dysfunction: A Meta-Analysis and Systematic Review. Neuropsychol Rev 2020; 31:202-219. [PMID: 33230717 PMCID: PMC7889582 DOI: 10.1007/s11065-020-09462-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
This review investigates the severity and nature of post-stroke working memory deficits with reference to the multi-component model of working memory. We conducted a systematic search in PubMed up to March 2019 with search terms for stroke and memory. Studies on adult stroke patients, that included a control group, and assessed working memory function, were selected. Effect sizes (Hedges' g) were extracted from 50 studies (in total 3,084 stroke patients) based on the sample size, mean and standard deviation of patients and controls. Performance of stroke patients was compared to healthy controls on low-load (i.e. capacity) and high-load (executively demanding) working memory tasks, grouped by modality (verbal, non-verbal). A separate analysis compared patients in the sub-acute and the chronic stage. Longitudinal studies and effects of lesion location were systematically reviewed. Stroke patients demonstrated significant deficits in working memory with a moderate effect size for both low-load (Hedges' g = -.58 [-.82 to -.43]) and high-load (Hedges' g = -.59 [-.73 to -.45]) tasks. The effect sizes were comparable for verbal and non-verbal material. Systematically reviewing the literature showed that working memory deficits remain prominent in the chronic stage of stroke. Lesions in a widespread fronto-parietal network are associated with working memory deficits. Stroke patients show decrements of moderate magnitude in all subsystems of working memory. This review clearly demonstrates the global nature of the impairment in working memory post-stroke.
Collapse
Affiliation(s)
- Selma Lugtmeijer
- University of Amsterdam, Amsterdam, the Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | | | | | - Frank-Erik de Leeuw
- Radboud University Medical Center, Department of Neurology, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Jiang Y, Wen J, Zhang W, Ma Z, Zhang C, Wang J, Dai Y, Hu Q, Li Z, Ma X. Metabolomics coupled with integrative pharmacology reveals the therapeutic effect of l-borneolum against cerebral ischaemia in rats. J Pharm Pharmacol 2020; 72:1256-1268. [PMID: 32496584 DOI: 10.1111/jphp.13294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Abstract
Objectives
This study aimed to investigate metabolic biomarker changes and related metabolic pathways before and after treatment with l-borneolum in cerebral ischaemic rats.
Methods
Rats were subjected to pMCAO surgery. The Zea-Longa scoring method was used to evaluate neurological deficits. TTC staining was used to observe cerebral infarction. HE staining was used to observe the pathological changes in brain tissue. The metabolomics method was used to analyse the changes in metabolism.
Results
The pharmacology changes of the H-B group were significantly different from those of the vehicle group. Moreover, according to the metabolomics method, identification of potential biomarkers in cerebral ischaemia treatment showed that the levels of l-valine and l-arginine were increased while the levels of N-succinyl-L,L-2,6-diaminopimelate and LysoPC (18 : 1(9Z)) were reduced, which were related to energy metabolism. Simultaneously, thermogenesis and bile secretion levels were inhibited by l-borneolum. Furthermore, elevated level of methotrexate might be related to an anti-inflammatory effect.
Conclusions
The therapeutic effect of l-borneolum on cerebral ischaemia might be associated with the regulation of energy metabolism, thermogenesis and bile secretion. These metabolic changes and the core target changes, as well as the metabolic-target pathway network, help to elucidate the mechanisms governing the effect of l-borneolum on cerebral ischaemia.
Collapse
Affiliation(s)
- Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Congen Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Dai
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Chen T, Yu W, Xie X, Ge H, Fu Y, Yang D, Zhou L, Liu X, Yan Z. Influence of Gonadotropin Hormone Releasing Hormone Agonists on Interhemispheric Functional Connectivity in Girls With Idiopathic Central Precocious Puberty. Front Neurol 2020; 11:17. [PMID: 32082242 PMCID: PMC7006458 DOI: 10.3389/fneur.2020.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose: The pubertal growth suppressive effects of gonadotropin hormone releasing hormone agonists (GnRHa) are well-known, although it remains unclear if long-term GnRHa treatment influences the brain function of treated children. The present study investigated the differences in the homotopic resting-state functional connectivity patterns in girls with idiopathic central precocious puberty (ICPP) with and without GnRHa treatment using voxel-mirrored homotopic connectivity (VMHC). Methods: Eighteen girls with ICPP who underwent 12 months of GnRHa treatment, 40 treatment-naïve girls with ICPP, and 19 age-matched girls with premature thelarche underwent resting-state functional magnetic resonance imaging using a 3T MRI. VMHC method was performed to explore the differences in the resting-state interhemispheric functional connectivity. The levels of serum pubertal hormones, including luteinizing hormone (LH), follicular-stimulating hormone, and estradiol, were assessed. Correlation analyses among the results of clinical laboratory examinations, neuropsychological scales, and VMHC values of different brain regions were performed with the data of the GnRHa treated group. Results: Significant decreases in VMHC of the lingual, calcarine, superior temporal, and middle frontal gyri were identified in the untreated group, compared with the control group. Medicated patients showed decreased VMHC in the superior temporal gyrus, when compared with the controls. Compared to the unmedicated group, the medicated group showed a significant increase in VMHC in the calcarine and middle occipital gyrus. Moreover, a positive correlation was observed between basal LH levels and VMHC of the middle occipital gyrus in medicated patients. Conclusions: These findings indicate that long-term treatment with GnRHa was associated with increased interhemispheric functional connectivity within several areas responsible for memory and visual process in patients with ICPP. Higher interhemispheric functional connectivity in the middle occipital gyrus was related to higher basal LH production in the girls who underwent treatment. The present study adds to the growing body of research associated with the effects of GnRHa on brain function.
Collapse
Affiliation(s)
- Tao Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenquan Yu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoling Xie
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huaizhi Ge
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Di Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Zhejiang Hospital, Hangzhou, China
| | - Lu Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Functional network connectivity changes in children with attention‐deficit hyperactivity disorder: A resting‐state fMRI study. Int J Dev Neurosci 2019; 78:1-6. [DOI: 10.1016/j.ijdevneu.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022] Open
|
6
|
Mei G, Dong X, Dong B, Bao M. Spontaneous recovery of effects of contrast adaptation without awareness. Front Psychol 2015; 6:1464. [PMID: 26483723 PMCID: PMC4588121 DOI: 10.3389/fpsyg.2015.01464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
Prolonged exposure to a high contrast stimulus reduces the neural sensitivity to subsequent similar patterns. Recent work has disclosed that contrast adaptation is controlled by multiple mechanisms operating over differing timescales. Adaptation to high contrast for a relatively longer period can be rapidly eliminated by adaptation to a lower contrast (or meanfield in the present study). Such rapid deadaptation presumably causes a short-term mechanism to signal for a sensitivity increase, canceling ongoing signals from long-term mechanisms. Once deadaptation ends, the short-term mechanism rapidly returns to baseline, and the slowly decaying effects in the long-term mechanisms reemerge, allowing the perceptual aftereffects to recover during continued testing. Although this spontaneous recovery effect is considered strong evidence supporting the multiple mechanisms theory, it remains controversial whether the effect is mainly driven by visual memory established during the initial longer-term adaptation period. To resolve this debate, we used a modified Continuous Flash Suppression (CFS) and visual crowding paradigms to render the adapting stimuli invisible, but still observed the spontaneous recovery phenomenon. These results exclude the possibility that spontaneous recovery found in the previous work was merely the consequence of explicit visual memory. Our findings also demonstrate that contrast adaptation, even at the unconscious processing levels, is controlled by multiple mechanisms.
Collapse
Affiliation(s)
- Gaoxing Mei
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; Department of Psychology, Guizhou Normal University Guiyang, China
| | - Xue Dong
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Bo Dong
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Min Bao
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|