1
|
Lee NK, Na DL, Kim HJ, Jang H, Sa JK, Ko BS, Chang JW. Prolonged Chronic Cerebral Hypoperfusion Does not Exacerbate Tau Pathology in a Tauopathy Mouse Model. J Integr Neurosci 2025; 24:26108. [PMID: 40018776 DOI: 10.31083/jin26108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Several preclinical studies have reported elevated levels of tau following the induction of chronic cerebral hypoperfusion (CCH) in Alzheimer's disease mouse models. The objective of this study was to first induce CCH in a mouse model of tauopathy over an extended period of up to 6 months and to subsequently investigate the effects of CCH on tau accumulation and alterations in the transcriptome. METHODS Three-month-old P301S tauopathy mice were randomly allocated to either a Sham or CCH group. The common carotid arteries (CCAs) of the CCH group were bilaterally implanted using 0.75-mm inner diameter ameroid constrictors. Prior to surgery, Doppler ultrasound imaging was acquired, with follow-up imaging at 1, 3, and 6 months postoperatively. Brain tissue samples were obtained, and hemispheres were dissected and divided for separate analysis. RESULT No significant differences in phosphorylated and total tau protein levels were found in either Sham or CCH left cortical hemispheres or hippocampal lysates. Immunohistochemical staining of phosphorylated tau in the right hemisphere revealed similar findings. Compared with the Sham group, transcriptomic deconvolution revealed a significant reduction of memory B cells in the CCH group (p = 0.029). CONCLUSION To clarify the effects of chronic hypoperfusion on tau pathology, more than one surgical method of hypoperfusion should be used in future studies.
Collapse
Affiliation(s)
- Na Kyung Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 06355 Seoul, Republic of Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, 06351 Seoul, Republic of Korea
| | - Duk L Na
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, 06351 Seoul, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 06351 Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 06351 Seoul, Republic of Korea
- Happymind Clinic, 06061 Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 06355 Seoul, Republic of Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, 06351 Seoul, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 06351 Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 06351 Seoul, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, 06355 Seoul, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, 02841 Seoul, Republic of Korea
| | - Bae Sung Ko
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 06355 Seoul, Republic of Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, 06351 Seoul, Republic of Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 06355 Seoul, Republic of Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, 06351 Seoul, Republic of Korea
- Cell & Gene Therapy Research Institute, ENCell Co., Ltd., 06072 Seoul, Republic of Korea
| |
Collapse
|
2
|
You F, Nicco C, Harakawa Y, Yoshikawa T, Inufusa H. The Potential of Twendee X ® as a Safe Antioxidant Treatment for Systemic Sclerosis. Int J Mol Sci 2024; 25:3064. [PMID: 38474309 DOI: 10.3390/ijms25053064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by systemic skin hardening, which combines Raynaud's phenomenon and other vascular disorders, skin and internal organ fibrosis, immune disorders, and a variety of other abnormalities. Symptoms vary widely among individuals, and personalized treatment is sought for each patient. Since there is no fundamental cure for SSc, it is designated as an intractable disease with patients receiving government subsidies for medical expenses in Japan. Oxidative stress (OS) has been reported to play an important role in the cause and symptoms of SSc. HOCl-induced SSc mouse models are known to exhibit skin and visceral fibrosis, vascular damage, and autoimmune-like symptoms observed in human SSc. The antioxidant combination Twendee X® (TwX) is a dietary supplement consisting of vitamins, amino acids, and CoQ10. TwX has been proven to prevent dementia in humans with mild cognitive impairment and significantly improve cognitive impairment in an Alzheimer's disease mouse model by regulating OS through a strong antioxidant capacity that cannot be achieved with a single antioxidant ingredient. We evaluated the effectiveness of TwX on various symptoms of HOCl-induced SSc mice. TwX-treated HOCl-induced SSc mice showed significantly reduced lung and skin fibrosis compared to untreated HOCl-induced SSc mice. TwX also significantly reduced highly oxidized protein products (AOPP) in serum and suppressed Col-1 gene expression and activation of B cells involved in autoimmunity. These findings suggest that TwX has the potential to be a new antioxidant treatment for SSc without side effects.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| | - Carole Nicco
- Université Paris Cité, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
- School of Medicine, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
3
|
Fukui K, You F, Kato Y, Yuzawa S, Kishimoto A, Hara T, Kanome Y, Harakawa Y, Yoshikawa T. A Blended Vitamin Supplement Improves Spatial Cognitive and Short-Term Memory in Aged Mice. Int J Mol Sci 2024; 25:2804. [PMID: 38474050 PMCID: PMC10932377 DOI: 10.3390/ijms25052804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Although many types of antioxidant supplements are available, the effect is greater if multiple types are taken simultaneously rather than one type. However, it is difficult to know which type and how much to take, as it is possible to take too many of some vitamins. As it is difficult for general consumers to make this choice, it is important to provide information based on scientific evidence. This study investigated the various effects of continuous administration of a blended supplement to aging mice. In 18-month-old C57BL/6 mice given a blended supplement ad libitum for 1 month, spatial cognition and short-term memory in the Morris water maze and Y-maze improved compared with the normal aged mice (spontaneous alternative ratio, normal aged mice, 49.5%, supplement-treated mice, 68.67%, p < 0.01). No significant differences in brain levels of secreted neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, were observed between these two groups. In treadmill durability tests before and after administration, the rate of increase in running distance after administration was significantly higher than that of the untreated group (increase rate, normal aged mice, 91.17%, supplement-treated aged mice, 111.4%, p < 0.04). However, training had no reinforcing effect, and post-mortem serum tests showed a significant decrease in aspartate aminotransferase, alanine aminotransferase, and total cholesterol values. These results suggest continuous intake of a blended supplement may improve cognitive function and suppress age-related muscle decline.
Collapse
Affiliation(s)
- Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan (Y.H.)
- Antioxidant Research, Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan;
| | - Yugo Kato
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Shuya Yuzawa
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Ayuta Kishimoto
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Takuma Hara
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Yuki Kanome
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan (Y.H.)
| | - Toshikazu Yoshikawa
- Antioxidant Research, Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan;
- Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
4
|
You F, Harakawa Y, Yoshikawa T, Inufusa H. Controlling Gut Microbiota by Twendee X ® May Contribute to Dementia Prevention. Int J Mol Sci 2023; 24:16642. [PMID: 38068966 PMCID: PMC10706060 DOI: 10.3390/ijms242316642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The human gut microbiota (GM) is a complex and dynamic ecosystem that hosts trillions of commensal and potentially pathogenic microorganisms. It is crucial in protecting humans from pathogens and in maintaining immune and metabolic homeostasis. Numerous studies have demonstrated that GM has a significant impact on health and disease, including Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder characterized by impaired short-term memory and cognitive deficits. Patients with AD have been reported to exhibit abnormalities in GM density and species composition. Oxidative stress (OS) has been implicated in the onset and progression of AD; however, the relationship between OS and gut microbiota in AD onset and progression is not clear. Twendee X® (TwX), an oral supplement consisting of eight active ingredients, has been shown to prevent dementia in mild cognitive impairment (MCI) in humans and substantially improve cognitive impairment in mouse models of AD. This positive effect is achieved through the potency of the combined antioxidants that regulate OS; therefore, similar results cannot be achieved by a single antioxidant ingredient. To examine the impact of long-term OS elevation, as seen in AD on the body and GM, we examined GM alterations during the initial OS elevation using a two-week OS loading rat model, and examined the effects of TwX on OS and GM. Furthermore, using a questionnaire survey and fecal samples, we analyzed the impact of TwX on healthy individuals' gut bacteria and the associated effect on their quality of life (QOL). TwX was found to increase the number of bacteria species and their diversity in GM, as well as butyrate-producing bacteria, which tend to be reduced in AD patients. Additionally, TwX improved defecation condition and QOL. The gut bacteria function as part of the homeostatic function during OS elevation, and the prophylactic administration of TwX strengthened this function. The results suggest that the preventative effect of TwX on dementia may involve the GM, in addition to the other previously demonstrated effects.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Kyoto 606-8225, Japan
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Kyoto 606-8225, Japan;
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Kyoto 606-8225, Japan
| |
Collapse
|
5
|
You F, Harakawa Y, Yoshikawa T, Inufusa H. Why Does the Antioxidant Complex Twendee X ® Prevent Dementia? Int J Mol Sci 2023; 24:13018. [PMID: 37629197 PMCID: PMC10455760 DOI: 10.3390/ijms241613018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease characterized by cognitive and short-term memory impairments. The disease involves multiple pathological factors such as amyloid plaque formation, mitochondrial dysfunction, and telomere shortening; however, oxidative stress and diabetes mellitus are significant risk factors. The onset of AD begins approximately 20 years before clinical symptoms manifest; therefore, treating AD after symptoms become evident is possibly too late to have a significant effect. As such, preventing AD or using an effective treatment at an early stage is important. Twendee X® (TwX) is an antioxidant formulation consisting of eight ingredients. TwX has been proven to prevent the progression to dementia in patients with mild cognitive impairment (MCI) in a multicenter, randomized, double-blind, placebo-controlled, prospective intervention trial. As well, positive data has already been obtained in several studies using AD model mice. Since both diabetes and aging are risk factors for AD, we examined the mechanisms behind the effects of TwX on AD using the spontaneous hyperglycemia model and the senescence model of aged C57BL/6 mice in this study. TwX was administered daily, and its effects on diabetes, autophagy in the brain, neurogenesis, and telomere length were examined. We observed that TwX protected the mitochondria from oxidative stress better than a single antioxidant. TwX not only lowered blood glucose levels but also suppressed brain neurogenesis and autophagy. Telomeres in TWX-treated mice were significantly longer than those in non-treated mice. There are many factors that can be implicated in the development and progression of dementia; however, multiple studies on TwX suggest that it may offer protection against dementia, not only through the effects of its antioxidants but also by targeting multiple mechanisms involved in its development and progression, such as diabetes, brain neurogenesis, telomere deficiency, and energy production.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan;
- School of Medicine, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
6
|
Fukui K, You F, Kato Y, Kimura M, Harakawa Y, Yoshikawa T, Inufusa H. Twendee X, a mixed antioxidant supplement, improves cognitive function, coordination, and neurotrophic factor expression in long-term vitamin E-deficient mice. J Clin Biochem Nutr 2023; 72:93-100. [PMID: 36936879 PMCID: PMC10017315 DOI: 10.3164/jcbn.22-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidation products gradually accumulate during senescence, enhancing the risk of onset of many severe diseases. One such disease is dementia, and the number of cases of dementia, including Alzheimer's disease, has been increasing world-wide. These diseases can be prevented via attenuation of age-related physiological dysfunction; one preventive approach is the ingestion of antioxidants such as vitamin C and vitamin E. Many antioxidants are readily available commercially. Ingestion of mixed antioxidants is expected to provide further beneficial effects for human health. In this study, we used vitamin E-deficient mice as an animal model of increased oxidative stress and assessed the effects of dosing with mixed antioxidants. Administration of a commercial mixed antioxidant formula, Twendee X significantly improved cognitive function and coordination compared to untreated vitamin E-deficient animals. Furthermore, the levels of brain-derived neurotrophic factor and nerve growth factor were significantly increased in the cerebral cortex of Twendee X-dosed vitamin E-deficient mice compared to untreated animals. These results indicate that intake of a mixed antioxidant supplement may be beneficial to human health, even after oxidative stress has begun. In the next stage, it will be necessary to compare with other antioxidants and consider whether it is effective in the aged model.
Collapse
Affiliation(s)
- Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
- To whom correspondence should be addressed. E-mail: (KF)
| | - Fukka You
- Division of Anti-oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| | - Yugo Kato
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Miyu Kimura
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Yoshiaki Harakawa
- Division of Anti-oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
| | - Toshikazu Yoshikawa
- Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| | - Haruhiko Inufusa
- Division of Anti-oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
7
|
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S335-S354. [PMID: 36683511 PMCID: PMC10473143 DOI: 10.3233/jad-221064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer's disease (AD). The NVU is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such as astrocytes and pericytes, can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-mediated NVU dysfunction in AD is the hotspot in the future.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingying Shen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
8
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
9
|
Feng T, Hu X, Fukui Y, Bian Z, Bian Y, Sun H, Takemoto M, Yunoki T, Nakano Y, Morihara R, Abe K, Yamashita T. Clinical and Pathological Benefits of Scallop-Derived Plasmalogen in a Novel Mouse Model of Alzheimer’s Disease with Chronic Cerebral Hypoperfusion. J Alzheimers Dis 2022; 86:1973-1982. [DOI: 10.3233/jad-215246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The oral ingestion of scallop-derived plasmalogen (sPlas) significantly improved cognitive function in Alzheimer’s disease (AD) patients. Objective: However, the effects and mechanisms of sPlas on AD with chronic cerebral hypoperfusion (CCH), a class of mixed dementia contributing to 20–30% among the dementia society, were still elusive. Methods: In the present study, we applied a novel mouse model of AD with CCH to investigate the potential effects of sPlas on AD with CCH. Results: The present study demonstrated that sPlas significantly recovered cerebral blood flow, improved motor and cognitive deficits, reduced amyloid-β pathology, regulated neuroinflammation, ameliorated neural oxidative stress, and inhibited neuronal loss in AD with CCH mice at 12 M. Conclusion: These findings suggest that sPlas possesses clinical and pathological benefits for AD with CCH in the novel model mice. Furthermore, sPlas could have promising prevention and therapeutic effects on patients of AD with CCH.
Collapse
Affiliation(s)
- Tian Feng
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Moore EE, Jefferson AL. Impact of Cardiovascular Hemodynamics on Cognitive Aging. Arterioscler Thromb Vasc Biol 2021; 41:1255-1264. [PMID: 33567862 PMCID: PMC7990698 DOI: 10.1161/atvbaha.120.311909] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elizabeth E. Moore
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Angela L. Jefferson
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen MJAP. Vascular Hypothesis of Alzheimer Disease: Topical Review of Mouse Models. Arterioscler Thromb Vasc Biol 2021; 41:1265-1283. [PMID: 33626911 DOI: 10.1161/atvbaha.120.311911] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Dorien M A Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Louise van der Weerd
- Departments of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands (L.v.d.W.)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije University of Amsterdam, the Netherlands (H.E.d.V.)
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| |
Collapse
|
12
|
Chelluboina B, Vemuganti R. Therapeutic potential of nutraceuticals to protect brain after stroke. Neurochem Int 2020; 142:104908. [PMID: 33220386 DOI: 10.1016/j.neuint.2020.104908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Stroke leads to significant neuronal death and long-term neurological disability due to synergistic pathogenic mechanisms. Stroke induces a change in eating habits and in many cases, leads to undernutrition that aggravates the post-stroke pathology. Proper nutritional regimen remains a major strategy to control the modifiable risk factors for cardiovascular and cerebrovascular diseases including stroke. Studies indicate that nutraceuticals (isolated and concentrated form of high-potency natural bioactive substances present in dietary nutritional components) can act as prophylactic as well as adjuvant therapeutic agents to prevent stroke risk, to promote ischemic tolerance and to reduce post-stroke consequences. Nutraceuticals are also thought to regulate blood pressure, delay neurodegeneration and improve overall vascular health. Nutraceuticals potentially mediate these effects by their powerful antioxidant and anti-inflammatory properties. This review discusses the studies that have highlighted the translational potential of nutraceuticals as stroke therapies.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
13
|
Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21061992. [PMID: 32183348 PMCID: PMC7139812 DOI: 10.3390/ijms21061992] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer’s disease (AD) pathogenesis through amyloid-β (Aβ) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting Aβ, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including Aβ drainage pathways, Aβ aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.
Collapse
|
14
|
Prevention of Cognitive Decline in Alzheimer's Disease by Novel Antioxidative Supplements. Int J Mol Sci 2020; 21:ijms21061974. [PMID: 32183152 PMCID: PMC7139972 DOI: 10.3390/ijms21061974] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a crucial role in Alzheimer’s disease (AD) from its prodromal stage of mild cognitive impairment. There is an interplay between oxidative stress and the amyloid β (Aβ) cascade via various mechanisms including mitochondrial dysfunction, lipid peroxidation, protein oxidation, glycoxidation, deoxyribonucleotide acid damage, altered antioxidant defense, impaired amyloid clearance, inflammation and chronic cerebral hypoperfusion. Based on findings that indicate that oxidative stress plays a major role in AD, oxidative stress has been considered as a therapeutic target of AD. In spite of favorable preclinical study outcomes, previous antioxidative components, including a single antioxidative supplement such as vitamin C, vitamin E or their mixtures, did not clearly show any therapeutic effect on cognitive decline in AD. However, novel antioxidative supplements can be beneficial for AD patients. In this review, we summarize the interplay between oxidative stress and the Aβ cascade, and introduce novel antioxidative supplements expected to prevent cognitive decline in AD.
Collapse
|