1
|
Wu J, Ji D, Jiao W, Jia J, Zhu J, Hang T, Chen X, Ding Y, Xu Y, Chang X, Li L, Liu Q, Cao Y, Zhong Y, Sun X, Guo Q, Wang T, Wang Z, Ling Y, Xiao W, Huang Z, Zhang Y. A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement. Acta Pharm Sin B 2025; 15:1070-1083. [PMID: 40177546 PMCID: PMC11959975 DOI: 10.1016/j.apsb.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 04/05/2025] Open
Abstract
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, the Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jiayi Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Taijun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuwen Xu
- Crystal Pharmatech Co., Ltd., Suzhou 215123, China
| | - Xinglong Chang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Liang Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Qiu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Yumei Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Yan Zhong
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Xia Sun
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Qingming Guo
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Tuanjie Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Ya Ling
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
3
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Zaidi SK, Hoda MN, Tabrez S, Khan MI. Pharmacological Inhibition of Class III Alcohol Dehydrogenase 5: Turning Remote Ischemic Conditioning Effective in a Diabetic Stroke Model. Antioxidants (Basel) 2022; 11:antiox11102051. [PMID: 36290774 PMCID: PMC9598110 DOI: 10.3390/antiox11102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
The restoration of cerebral blood flow (CBF) to achieve brain tissue oxygenation (PbtO2) is the primary treatment for ischemic stroke, a significant cause of adult mortality and disability worldwide. Nitric oxide (NO) and its bioactive s-nitrosylated (SNO) reservoirs, such as s-nitrosoglutathione (GSNO), induce hypoxic vasodilation to enhance CBF during ischemia. The endogenous pool of SNOs/GSNO is enhanced via the activation of endothelial NO synthase (eNOS/NOS3) and by the suppression of class III alcohol dehydrogenase 5 (ADH5), also known as GSNO reductase (GSNOR). Remote ischemic conditioning (RIC), which augments NOS3 activity and SNO, is an emerging therapy in acute stroke. However, RIC has so far shown neutral effects in stroke clinical trials. As the majority of stroke patients are presented with endothelial dysfunctions and comorbidities, we tested the hypothesis that NOS3 dysfunction and diabetes will abolish the protective effects of RIC therapy in stroke, and the prior inhibition of GSNOR will turn RIC protective. Our data demonstrate that RIC during thrombotic stroke failed to enhance the CBF and the benefits of thrombolysis in NOS3 mutant (NOS3+/−) mice, a genetic model of NOS3 dysfunction. Interestingly, thrombotic stroke in diabetic mice enhanced the activity of GSNOR as early as 3 h post-stroke without decreasing the plasma nitrite (NO2−). In thrombotic stroke, neither a pharmacological inhibitor of GSNOR (GRI) nor RIC therapy alone was protective in diabetic mice. However, prior treatment with GRI followed by RIC enhanced the CBF and improved recovery. In a reperfused stroke model, the GRI–RIC combination therapy in diabetic mice augmented PbtO2, a translatory signature of successful microvascular reflow. In addition, RIC therapy unexpectedly increased the inflammatory markers at 6 h post-stroke in diabetic stroke that were downregulated in combination with GRI while improving the outcomes. Thus, we conclude that preexisting NOS3 dysfunctions due to comorbidities may neutralize the benefits of RIC in stroke, which can be turned protective in combination with GRI. Our findings may support the future clinical trial of RIC in comorbid stroke. Further studies are warranted to test and develop SNO reservoirs as the blood-associated biomarker to monitor the response and efficacy of RIC therapy in stroke.
Collapse
Affiliation(s)
- Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Life Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Chen Y, Yang B, Xu L, Shi Z, Han R, Yuan F, Ouyang J, Yan X, Ostrikov KK. Inhalation of Atmospheric-Pressure Gas Plasma Attenuates Brain Infarction in Rats With Experimental Ischemic Stroke. Front Neurosci 2022; 16:875053. [PMID: 35516812 PMCID: PMC9063166 DOI: 10.3389/fnins.2022.875053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggest the potential efficacy of neuroprotective effects of gaseous atmospheric-pressure plasma (APP) treatment on neuronal cells. However, it remains unclear if the neuroprotective properties of the gas plasmas benefit the ischemic stroke treatment, and how to use the plasmas in the in vivo ischemic stroke models. Rats were subjected to 90 min middle cerebral artery occlusion (MCAO) to establish the ischemic stroke model and then intermittently inhaled the plasma for 2 min at 60 min MCAO. The regional cerebral blood flow (CBF) was monitored. Animal behavior scoring, magnetic resonance imaging (MRI), 2,3,5-triphenyltetrazolium chloride (TTC) staining, and hematoxylin and eosin (HE) staining were performed to evaluate the therapeutic efficacy of the gas plasma inhalation on MCAO rats. Intermittent gas plasma inhalation by rats with experimental ischemic stroke could improve neurological function, increase regional CBF, and decrease brain infarction. Further MRI tests showed that the gas plasma inhalation could limit the ischemic lesion progression, which was beneficial to improve the outcomes of the MCAO rats. Post-stroke treatment with intermittent gas plasma inhalation could reduce the ischemic lesion progression and decrease cerebral infarction volume, which might provide a new promising strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bingyan Yang
- School of Physics, Beijing Institute of Technology, Beijing, China
| | - Lixin Xu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Han
- School of Physics, Beijing Institute of Technology, Beijing, China
| | - Fang Yuan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiting Ouyang
- School of Physics, Beijing Institute of Technology, Beijing, China
- *Correspondence: Jiting Ouyang,
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xu Yan,
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Chatterji A, Banerjee D, Billiar TR, Sengupta R. Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases. Free Radic Biol Med 2021; 172:604-621. [PMID: 34245859 DOI: 10.1016/j.freeradbiomed.2021.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
S-nitrosylation is a very fundamental post-translational modification of protein and non-protein thiols due the involvement of it in a variety of cellular processes including activation/inhibition of several ion channels such as ryanodine receptor in the cardiovascular system; blood vessel dilation; cGMP signaling and neurotransmission. S-nitrosothiol homeostasis in the cell is tightly regulated and perturbations in homeostasis result in an altered redox state leading to a plethora of disease conditions. However, the exact role of S-nitrosylated proteins and nitrosative stress metabolites in inflammation and in inflammation modulation is not well-reviewed. The cell utilizes its intricate defense mechanisms i.e. cellular denitrosylases such as Thioredoxin (Trx) and S-nitrosoglutathione reductase (GSNOR) systems to combat nitric oxide (NO) pathology which has also gained current attraction as novel anti-inflammatory molecules. This review attempts to provide state-of-the-art knowledge from past and present research on the mechanistic role of nitrosative stress intermediates (RNS, OONO-, PSNO) in pulmonary and autoimmune diseases and how cellular denitrosylases particularly GSNOR and Trx via imparting opposing effects can modulate and reduce inflammation in several health and disease conditions. This review would also bring into notice the existing gaps in current research where denitrosylases can be utilized for ameliorating inflammation that would leave avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Ajanta Chatterji
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Debasmita Banerjee
- Department of Molecular Biology and Biotechnology, University of Kalyani, Block C, Nadia, Kalyani, West Bengal, 741235, India
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 5213, USA
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
7
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
8
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Ruilian L, Honglin Q, Jun X, Jianxin L, Qingyun B, Yilin C, Haifeng M. H 2S-mediated aerobic exercise antagonizes the hippocampal inflammatory response in CUMS-depressed mice. J Affect Disord 2021; 283:410-419. [PMID: 33581467 DOI: 10.1016/j.jad.2021.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE This thesis was to investigate the protective effect and mechanism of H2S-mediated aerobic exercise on the antagonism of the hippocampus inflammatory response in CUMS-depressed mice. METHOD Seventy C57BL/6 mice were randomly divided into control group (CG), model control group (MG), model exercise group (ME), H2S enhanced group (HG) and H2S enhanced and exercise group (HE). All mice except CG underwent a 28-day CUMS depression model. ME and HE received moderate-intensity aerobic treadmill training for 8 weeks. They were randomly selected for Nissl staining, Immunofluorescence, methylene blue colorimetric assay, and ELISA. The levels of IL-10 and TNF-ɑ were detected by qRT-PCR, and the expression levels of CBS and inflammatory-related factors in the hippocampus were detected. RESULT Compared with CG, the number of erections, modifications, and crossing grids in MG mice were significantly reduced, the time of forced swimming and forced tail suspension was significantly prolonged, the positive rate of 5-HT decreased, and the symptoms of depression were obvious. The positive rate of CD45+ increased, the inflammatory response was obvious, and the content of H2S and the expression of biosynthetic enzyme CBS decreased. Aerobic exercise and H2S-enhanced mice improved depressive symptoms, decreased proinflammatory factors, increased anti-inflammatory factors, increased H2S content, increased CBS expression, and increased H2S. CONCLUSION H2S may participate in aerobic exercise to antagonize the inflammatory process of the hippocampus in CUMS-depressed mice by reducing the release of inflammatory response factors and hippocampus nerve injury factors, and effectively alleviate inflammatory injury in the hippocampus of depressed mice.
Collapse
Affiliation(s)
- Liu Ruilian
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China.
| | - Qu Honglin
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China.
| | - Xie Jun
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Long Jianxin
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Bai Qingyun
- Jiangxi Key Lab of Natural Drug Research, College of Chemistry and Bioengineering, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Chen Yilin
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Mao Haifeng
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| |
Collapse
|
10
|
Khan M, Qiao F, Islam SMT, Dhammu TS, Kumar P, Won J, Singh AK, Singh I. GSNOR and ALDH2 alleviate traumatic spinal cord injury. Brain Res 2021; 1758:147335. [PMID: 33545099 DOI: 10.1016/j.brainres.2021.147335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Traumatic spinal cord injury (SCI) enhances the activity of S-nitrosoglutathione reductase (GSNOR) and inhibits the mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity, resulting in prolonged and sustained pain and functional deficits. This study's objective was to test the hypotheses that GSNOR's specific inhibitor N6022 mitigates pain and improves functional recovery in a mouse model of SCI. Furthermore, the degree of recovery is enhanced and the rate of recovery is accelerated by an ALDH2 activator Alda-1. Using both wild-type and GSNOR-/- mice, the SCI model deployed for groups was contusion at the T9-T10 vertebral level. The enzymatic activity of GSNOR and ALDH2 was measured, and the expression of GSNOR and ALDH2 was determined by western blot analysis. Functional improvements in experimental animals were assessed with locomotor, sensorimotor, and pain-like behavior tests. Wild-type SCI animals had enhanced GSNOR activity and decreased ALDH2 activity, leading to neurovascular dysfunction, edema, and worsened functional outcomes, including locomotor deficits and pain. Compared to wild-type SCI mice, GSNOR-/- mice had better functional outcomes. Monotherapy with either GSNOR inhibition by N6022 or enhanced ALDH2 activity by Alda-1 correlated well with functional recovery and lessened pain. However, combination therapy provided synergistic pain-relieving effects and more significant functional recovery compared with monotherapy. Conclusively, dysregulations in GSNOR and ALDH2 are among the causative mechanisms of SCI injury. Either inhibiting GSNOR or activating ALDH2 ameliorates SCI. Combining the specific inhibitor of GSNOR (N6022) with the selective activator of ALDH2 (Alda-1) provides greater protection to the neurovascular unit and confers greater functional recovery. The study is novel, and the combination therapy (N6022 + Alda-1) possesses translational potential.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H Johnson VA Medical Center, Charleston, SC, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Ralph H Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
11
|
S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance. Antioxidants (Basel) 2020; 9:antiox9090870. [PMID: 32942712 PMCID: PMC7555592 DOI: 10.3390/antiox9090870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a fundamental organ to ensure whole-body homeostasis, allowing for a proper increase in insulin sensitivity from the fast to the postprandial status. Hepatic regulation of glucose metabolism is crucial and has been shown to be modulated by glutathione (GSH) and nitric oxide (NO). However, knowledge of the metabolic action of GSH and NO in glucose homeostasis remains incomplete. The current study was designed to test the hypothesis that treatment with S-nitrosoglutathione is sufficient to revert insulin resistance induced by a high-sucrose diet. Male Wistar rats were divided in a control or high-sucrose group. Insulin sensitivity was determined: (i) in the fast state; (ii) after a standardized test meal; (iii) after GSH + NO; and after (iv) S-nitrosoglutathione (GSNO) administration. The fasting glucose level was not different between the control and high-sucrose group. In the liver, the high-sucrose model shows increased NO and unchanged GSH levels. In control animals, insulin sensitivity increased after a meal or administration of GSH+NO/GSNO, but this was abrogated by sucrose feeding. GSNO was able to revert insulin resistance induced by sucrose feeding, in a dose-dependent manner, suggesting that they have an insulin-sensitizing effect in vivo. These effects are associated with an increased insulin receptor and Akt phosphorylation in muscle cells. Our findings demonstrate that GSNO promotes insulin sensitivity in a sucrose-induced insulin-resistant animal model and further implicates that this antioxidant molecule may act as a potential pharmacological tool for the treatment of insulin resistance in obesity and type 2 diabetes.
Collapse
|