1
|
Wakasa M, Nakagawa C, Takamura TA, Fujibayashi K, Akao H, Kitayama M, Shimizu A, Niida Y, Kajinami K. A male patient with pseudoxanthoma elasticum caused by isodisomy of chromosome 16 containing a nonsense variant of the ABCC6 gene: A quarter-century treatment experience. ATHEROSCLEROSIS PLUS 2025; 60:1-5. [PMID: 40226385 PMCID: PMC11985156 DOI: 10.1016/j.athplu.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/04/2025] [Accepted: 03/16/2025] [Indexed: 04/15/2025]
Abstract
Pseudoxanthoma elasticum (PXE) is a rare autosomal recessive disorder characterized by fragmentation and calcification of the elastic fibers of the skin, eyes, and various arteries with highly variable clinical expression. PXE is predominantly caused by pathogenic variants of the ABCC6 gene, which encodes the ABCC6 efflux transporter; however, the precise mechanism responsible for clinical manifestation remains unclear. We herein report the case of a male patient with PXE with premature coronary stenosis as his first presentation requiring catheter intervention, in association with typical ocular and skin lesions; the latter was confirmed histologically. A molecular analysis revealed an isodisomy of 6.8 Mb in the 16p13.11 region containing the nonsense mutation p.(Gln199Ter) in the ABCC6 gene. We also describe the 25-year clinical course of this case, while focusing on cardiovascular lesions.
Collapse
Affiliation(s)
- Minoru Wakasa
- Department of Cardiology, Kanazawa Medical University, Japan
| | | | | | | | - Hironobu Akao
- Department of Cardiology, Kanazawa Medical University, Japan
| | | | - Akira Shimizu
- Department of Dermatology, Kanazawa Medical University, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Japan
| | - Kouji Kajinami
- Department of Cardiology, Kanazawa Medical University, Japan
| |
Collapse
|
2
|
Palakurti R, Biswas N, Roy S, Gnyawali SC, Sinha M, Singh K, Ghatak S, Sen CK, Khanna S. Inducible miR-1224 silences cerebrovascular Serpine1 and restores blood flow to the stroke-affected site of the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:276-292. [PMID: 36726407 PMCID: PMC9868883 DOI: 10.1016/j.omtn.2022.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
The α-tocotrienol (TCT) form of natural vitamin E is more potent than the better known α-tocopherol against stroke. Angiographic studies of canine stroke have revealed beneficial cerebrovascular effects of TCT. This work seeks to understand the molecular basis of such effect. In mice, TCT supplementation improved perfusion at the stroke-affected site by inducing miR-1224. miRNA profiling of a laser-capture-microdissected stroke-affected brain site identified miR-1224 as the only vascular miR induced. Lentiviral knockdown of miR-1224 significantly blunted the otherwise beneficial effects of TCT on stroke outcomes. Studies on primary brain microvascular endothelial cells revealed direct angiogenic properties of miR-1224. In mice not treated with TCT, advance stereotaxic delivery of an miR-1224 mimic to the stroke site markedly improved stroke outcomes. Mechanistic studies identified Serpine1 as a target of miR-1224. Downregulation of Serpine1 augmented the angiogenic response of the miR-1224 mimic in the brain endothelial cells. The inhibition of Serpine1, by dietary TCT and pharmacologically, increased cerebrovascular blood flow at the stroke-affected site and protected against stroke. This work assigns Serpine1, otherwise known to be of critical significance in stroke, a cerebrovascular function that worsens stroke outcomes. miR-1224-dependent inhibition of Serpine1 can be achieved by dietary TCT as well as by the small-molecule inhibitor TM5441.
Collapse
Affiliation(s)
- Ravichand Palakurti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nirupam Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Surya C. Gnyawali
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mithun Sinha
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Subhadip Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: Savita Khanna, PhD, Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Islam MK, Islam MR, Rahman MH, Islam MZ, Amin MA, Ahmed KR, Rahman MA, Moni MA, Kim B. Bioinformatics Strategies to Identify Shared Molecular Biomarkers That Link Ischemic Stroke and Moyamoya Disease with Glioblastoma. Pharmaceutics 2022; 14:1573. [PMID: 36015199 PMCID: PMC9413912 DOI: 10.3390/pharmaceutics14081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Expanding data suggest that glioblastoma is accountable for the growing prevalence of various forms of stroke formation, such as ischemic stroke and moyamoya disease. However, the underlying deterministic details are still unspecified. Bioinformatics approaches are designed to investigate the relationships between two pathogens as well as fill this study void. Glioblastoma is a form of cancer that typically occurs in the brain or spinal cord and is highly destructive. A stroke occurs when a brain region starts to lose blood circulation and prevents functioning. Moyamoya disorder is a recurrent and recurring arterial disorder of the brain. To begin, adequate gene expression datasets on glioblastoma, ischemic stroke, and moyamoya disease were gathered from various repositories. Then, the association between glioblastoma, ischemic stroke, and moyamoya was established using the existing pipelines. The framework was developed as a generalized workflow to allow for the aggregation of transcriptomic gene expression across specific tissue; Gene Ontology (GO) and biological pathway, as well as the validation of such data, are carried out using enrichment studies such as protein-protein interaction and gold benchmark databases. The results contribute to a more profound knowledge of the disease mechanisms and unveil the projected correlations among the diseases.
Collapse
Affiliation(s)
- Md Khairul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh; (M.K.I.); (M.R.I.); (M.Z.I.)
| | - Md Rakibul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh; (M.K.I.); (M.R.I.); (M.Z.I.)
| | - Md Habibur Rahman
- Department of Computer Science & Engineering, Islamic University, Kushtia 7003, Bangladesh;
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh; (M.K.I.); (M.R.I.); (M.Z.I.)
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka 1216, Bangladesh;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|