• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4809841)   Today's Articles (3446)
For: Qi X, Hu G, Sun H, Chen Z, Yang C. Machine Learning-Based Perihematomal Tissue Features to Predict Clinical Outcome after Spontaneous Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2022;31:106475. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]  Open
Number Cited by Other Article(s)
1
Xia X, Liu J, Cui J, You Y, Huang C, Li H, Zhang D, Ren Q, Jiang Q, Meng X. A nomogram incorporating CT-based peri-hematoma radiomics features to predict functional outcome in patients with intracerebral hemorrhage. Eur J Radiol 2025;183:111871. [PMID: 39662425 DOI: 10.1016/j.ejrad.2024.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
2
Liu H, Su Y, Peng M, Zhang D, Wang Q, Zhang M, Ge R, Xu H, Chang J, Shao X. Prediction of prognosis in patients with cerebral contusions based on machine learning. Sci Rep 2024;14:31993. [PMID: 39738368 PMCID: PMC11685815 DOI: 10.1038/s41598-024-83481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]  Open
3
Matsumoto K, Ishihara K, Matsuda K, Tokunaga K, Yamashiro S, Soejima H, Nakashima N, Kamouchi M. Machine Learning-Based Prediction for In-Hospital Mortality After Acute Intracerebral Hemorrhage Using Real-World Clinical and Image Data. J Am Heart Assoc 2024;13:e036447. [PMID: 39655759 PMCID: PMC11935536 DOI: 10.1161/jaha.124.036447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
4
Yang YF, Zhang H, Song XL, Yang C, Hu HJ, Fang TS, Zhang ZH, Zhu X, Yang YY. Predicting Outcome of Patients With Cerebral Hemorrhage Using a Computed Tomography-Based Interpretable Radiomics Model: A Multicenter Study. J Comput Assist Tomogr 2024;48:977-985. [PMID: 38924426 DOI: 10.1097/rct.0000000000001627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
5
Song X, Zhang H, Han Y, Lou S, Zhao E, Dong Y, Yang C. Based on hematoma and perihematomal tissue NCCT imaging radiomics predicts early clinical outcome of conservatively treated spontaneous cerebral hemorrhage. Sci Rep 2024;14:18546. [PMID: 39122887 PMCID: PMC11315882 DOI: 10.1038/s41598-024-69249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]  Open
6
Zhang H, Yang YF, Song XL, Hu HJ, Yang YY, Zhu X, Yang C. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study. BMC Med Imaging 2024;24:170. [PMID: 38982357 PMCID: PMC11234657 DOI: 10.1186/s12880-024-01352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]  Open
7
Vitt JR, Mainali S. Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients. Semin Neurol 2024;44:342-356. [PMID: 38569520 DOI: 10.1055/s-0044-1785504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
8
Pei L, Fang T, Xu L, Ni C. A Radiomics Model Based on CT Images Combined with Multiple Machine Learning Models to Predict the Prognosis of Spontaneous Intracerebral Hemorrhage. World Neurosurg 2024;181:e856-e866. [PMID: 37931880 DOI: 10.1016/j.wneu.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA