1
|
Gomes EDT, Passos GR, Antunes NDJ, de Oliveira MG, de Souza VB, Schenka AA, da Costa JL, Antunes E, Mónica FZ. The multidrug resistance protein 4 is expressed and functionally active in isolated bladder from pig. Am J Physiol Regul Integr Comp Physiol 2024; 327:R291-R303. [PMID: 38881411 DOI: 10.1152/ajpregu.00238.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Multidrug resistance proteins type 4 (MRP4) and 5 (MRP5) play pivotal roles in the transport of cyclic nucleotides in various tissues. However, their specific functions within the lower urinary tract remain relatively unexplored. This study aimed to investigate the effect of pharmacological inhibition of MRPs on cyclic nucleotide signaling in isolated pig bladder. The relaxation responses of the bladder were assessed in the presence of the MRP inhibitor, MK571. The temporal changes in intra- and extracellular levels of cAMP and cGMP in stimulated tissues were determined by mass spectrometry. The gene (ABCC4) and protein (MRP4) expression were also determined. MK571 administration resulted in a modest relaxation effect of approximately 26% in carbachol-precontracted bladders. The relaxation induced by phosphodiesterase inhibitors such as cilostazol, tadalafil, and sildenafil was significantly potentiated in the presence of MK571. In contrast, no significant potentiation was observed in the relaxation induced by substances elevating cAMP levels or stimulators of soluble guanylate cyclase. Following forskolin stimulation, both intracellular and extracellular cAMP concentrations increased by approximately 15.8-fold and 12-fold, respectively. Similarly, stimulation with tadalafil + BAY 41-2272 resulted in roughly 8.2-fold and 3.4-fold increases in intracellular and extracellular cGMP concentrations, respectively. The presence of MK571 reduced only the extracellular levels of cGMP. This study reveals the presence and function of MRP4 transporters within the porcine bladder and paves the way for future research exploring the role of this transporter in both underactive and overactive bladder disorders.NEW & NOTEWORTHY This study investigates the impact of pharmacological inhibition of MRP4 and MRP5 transporters on cyclic nucleotide signaling in isolated pig bladders. MK571 administration led to modest relaxation, with enhanced effects observed in the presence of phosphodiesterase inhibitors. However, substances elevating cAMP levels remained unaffected. MK571 selectively reduced extracellular cGMP levels. These findings shed light on the role of MRP4 transporters in the porcine bladder, opening avenues for further research into bladder disorders.
Collapse
Affiliation(s)
- Erick de Toledo Gomes
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Reolon Passos
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Mariana Gonçalves de Oliveira
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Valeria Barbosa de Souza
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Almeida Schenka
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - José Luiz da Costa
- Campinas Poison Control Center, University of Campinas, Campinas, Brazil
| | - Edson Antunes
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Zakia Mónica
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
de Oliveira MG, Passos GR, de Gomes EDT, Leonardi GR, Zapparoli A, Antunes E, Mónica FZ. Inhibition of multidrug resistance proteins by MK571 restored the erectile function in obese mice through cGMP accumulation. Andrology 2023; 11:611-620. [PMID: 36375168 DOI: 10.1111/andr.13340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/09/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intracellular levels of cyclic nucleotides can also be controlled by the action of multidrug resistance protein types 4 (MRP4) and 5 (MRP5). To date, no studies evaluated the role of their inhibition in an animal model of erectile dysfunction (ED). OBJECTIVES To evaluate the effect of a 2-week treatment with MK571, an inhibitor of the efflux of cyclic nucleotides in the ED of obese mice. MATERIALS AND METHODS Mice were divided in three groups: (i) lean, (ii) obese, and (iii) obese + MK571. The corpus cavernosum (CC) were isolated, and concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and tadalafil in addition to electrical field stimulation (EFS) were carried out in phenylephrine pre-contracted tissues. Expression of ABCC4 and ABCC5, intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), the protein levels for pVASPSer157 and pVASPSer239 , and the intracavernous pressure (ICP) were also determined. The intracellular and extracellular (supernatant) ratios in CC from obese and lean stimulated with a cGMP-increasing substance (BAY 58-2667) in the absence and presence of MK571 (20 μM, 30 min) were also assessed. RESULTS The treatment with MK571 completely reversed the lower relaxing responses induced by EFS, ACh, SNP, and tadalafil observed in obese mice CC in comparison with untreated obese mice. Cyclic GMP and p-VASPSer239 expression were significantly reduced in CC from obese groups. MK571 promoted a sixfold increase in cGMP without interfering in the protein expression of p-VASPSer239 . Neither the cAMP levels nor p-VASPSer157 were altered in MK571-treated animals. The ICP was ∼50% lower in obese than in the lean mice; however, the treatment with MK571 fully reversed this response. Expressions of ABCC4 and ABCC5 were not different between groups. The intra/extracellular ratio of cGMP was similar in CC from obese and lean mice stimulated with BAY 58-2667. CONCLUSIONS The MRPs inhibition by MK571 favored the accumulation of cGMP in the smooth muscle cells, thus improving the smooth muscle relaxation and the erectile function in obese mice.
Collapse
Affiliation(s)
- Mariana Gonçalves de Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Reolon Passos
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erick de Toledo de Gomes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Ruiz Leonardi
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Zapparoli
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Kataoka T, Hotta Y, Kimura K. A review of experimental techniques for erectile function researches and development of medical technology using animal erectile dysfunction models in sexual and reproductive medicine. Reprod Med Biol 2023; 22:e12513. [PMID: 37020643 PMCID: PMC10069627 DOI: 10.1002/rmb2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Background Erectile dysfunction (ED) is one of the causes of male infertility and is a disease that requires treatment. The first-line drugs for ED are phosphodiesterase 5 (PDE-5) inhibitors, and further treatment options are currently limited. Medical technologies, such as genetic control and regenerative medicine, are developing rapidly. Research on erectile function is progressing rapidly, coupled with technological innovations in other areas. Methods A PubMed search using the keywords "animal (rat, mouse, rabbit, dog, and monkey)" and "erectile" was conducted, and all relevant peer-reviewed English results were evaluated. Main findings The methods for evaluating erectile function include intracavernous pressure (ICP) measurements, isometric tension studies, and dynamic infusion cavernosometry. Papers also reported various disease model animals for the study of diabetes mellitus, cavernous nerve injury, and drug-induced ED. Conclusion Basic research on ED treatment has progressed rapidly over the past 20 years. In particular, research on the mechanism of ED has been accelerated by the publication of a study on the evaluation of erectile function using ICP measurements in rats. In addition, molecular biological experimental methods such as polymerase chain reaction (PCR) and western blotting have become relatively easy to perform due to technological progress, thus advancing research development.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesChiba Institute of Science15‐8 Shiomi‐choChoshiChiba288‐0025Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
- Department of Clinical Pharmaceutics, Graduate School of Medical SciencesNagoya City University1‐Kawasumi, Mizuho‐cho, Mizuho‐kuNagoya467‐8601Japan
| |
Collapse
|
4
|
Yang ZK, Li DW, Peng L, Liu CF, Wang ZY. Transcriptomic responses of the zearalenone (ZEN)-detoxifying yeast Apiotrichum mycotoxinivorans to ZEN exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113756. [PMID: 35691196 DOI: 10.1016/j.ecoenv.2022.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Zearalenone (ZEN) is a potent oestrogenic mycotoxin that is mainly produced by Fusarium species and is a serious environmental pollutant in animal feeds. Apiotrichum mycotoxinivorans has been widely used as a feed additive to detoxify ZEN. However, the effects of ZEN on A. mycotoxinivorans and its detoxification mechanisms remain unclear. In this study, transcriptomic and bioinformatic analyses were used to investigate the molecular responses of A. mycotoxinivorans to ZEN exposure and the genetic basis of ZEN detoxification. We detected 1424 significantly differentially expressed genes (DEGs), of which 446 were upregulated and 978 were downregulated. Functional and enrichment analyses showed that ZEN-induced genes were significantly associated with xenobiotic metabolism, oxidative stress response, and active transport systems. However, ZEN-inhibited genes were mainly related to cell division, cell cycle, and fungal development. Subsequently, bioinformatic analysis identified candidate ZEN-detoxification enzymes. The Baeyer-Villiger monooxygenases and carboxylesterases, which are responsible for the formation and subsequent hydrolysis of a new ZEN lactone, respectively, were significantly upregulated. In addition, the expression levels of genes related to conjugation and transport involved in the xenobiotic detoxification pathway were significantly upregulated. Moreover, the expression levels of genes encoding enzymatic antioxidants and those related to growth and apoptosis were significantly upregulated and downregulated, respectively, which made it possible for A. mycotoxinivorans to survive in a highly toxic environment and efficiently detoxify ZEN. This is the first systematic report of ZEN tolerance and detoxification in A. mycotoxinivorans. We identified the metabolic enzymes that were potentially involved in detoxifying ZEN in the GMU1709 strain and found that ZEN-induced transcriptional regulation of genes is key to withstanding highly toxic environments. Hence, our results provide valuable information for developing enzymatic detoxification systems or engineering this detoxification pathway in other species.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Innovation centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen-Fei Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yuan Wang
- Innovation Centre for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Justo AFO, de Oliveira MG, Calmasini FB, Alexandre EC, Bertollotto GM, Jacintho FF, Antunes E, Mónica FZ. Preserved activity of soluble guanylate cyclase (sGC) in iliac artery from middle-aged rats: Role of sGC modulators. Nitric Oxide 2021; 106:9-16. [PMID: 33122152 DOI: 10.1016/j.niox.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Vascular aging leads to structural and functional changes. Iliac arteries (IA) provide blood flow to lower urinary tract and pelvic ischemia has been reported as an important factor for bladder remodeling and overactivity. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (cGMP) is one factor involved in the development of lower urinary tract (LUT) disorders. Therefore, we hypothesized that ageing-associated LUT disorders is a consequence of lower cGMP productions due to an oxidation of soluble guanylate cylase (sGC) that results in local ischemia. In the present study IA from middle-aged and young rats were isolated and the levels of NO, reactive oxygen species (ROS), the gene expression of the enzymes involved in the NO-pathway and concentration-response curves to the soluble guanylate (sGC) stimulator (BAY 41-2272), sGC activator (BAY 58-2667), tadalafil, acetylcholine (ACh) and sodium nitroprusside (SNP) were determined. In IA from middle-aged rats the gene expression for endothelial nitric oxide synthase and the ROS were lower and higher, respectively than the young group. The relaxations induced by ACh and SNP were significantly lower in IA from middle-aged rats. In IA from middle-aged rats the mRNA expression of PDE5 was 55% higher, accompanied by lower relaxation induced by tadalafil. On the other hand, the gene expression for sGCα1 were similar in IA from both groups. Both BAY 41-2272 and BAY 58-2667 produced concentration-dependent relaxations in IA from both groups, however, the latter was 9-times more potent than BAY 41-2272 and produced similar relaxations in IA in both middle-aged and young groups. Yet, the sGC oxidant, ODQ increased the relaxation and the cGMP levels induced by BAY 58-2667. On the other hand, in tissues stimulated with SNP, tadalafil and BAY-2272, the intracellular levels of cGMP were lower in IA from middle-aged than young rats. In conclusion, our results clearly showed that the relaxations induced by the endothelium-dependent and -independent agents, by the PDE5 inhibitor and by sGC stimulator were impaired in IA from aged rats, while that induced by sGC activator was preserved. It suggests that sGC activator may be advantageous in treating ischemia-related functional changes in the lower urinary tract organs in situations where the NO levels are reduced.
Collapse
Affiliation(s)
- Alberto Fernando O Justo
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | | | | | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
6
|
Guanosine, a guanine-based nucleoside relaxed isolated corpus cavernosum from mice through cGMP accumulation. Purinergic Signal 2020; 16:241-249. [PMID: 32458299 DOI: 10.1007/s11302-020-09702-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/01/2020] [Indexed: 10/24/2022] Open
Abstract
In corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine. Therefore, our study aims to pharmacologically characterize the effect of guanosine in isolated CC from mice. The penis was isolated and functional and biochemical analyses were carried out. The guanine-based nucleotides GTP, guanosine diphosphate, guanosine monophosphate, and cGMP relaxed mice corpus cavernosum, but the relaxation (90.7 ± 12.5%) induced by guanosine (0.000001-1 mM) was greater than that of the nucleotides (~ 45%, P < 0.05). Guanosine-induced relaxation was not altered in the presence of adenosine type 2A and 2B receptor antagonists. No augment was observed in the intracellular levels of cyclic adenosine monophosphate in tissues stimulated with guanosine. Inhibitors of nitric oxide synthase (L-NAME, 100 μM) and soluble guanylate cyclase (ODQ, 10 μM) produced a significant reduction in guanosine-induced relaxation in all concentrations studied, while in the presence of tadalafil (300 nM), a significant increase was observed. Pre-incubation of guanosine (100 μM) produced a 6.6-leftward shift in tadalafil-induced relaxation. The intracellular levels of cGMP were greater when CC was stimulated with guanosine. Inhibitors of ecto-nucleotidases and xanthine oxidase did not interfere in the response induced by guanosine. In conclusion, our study shows that guanosine relaxes mice CC and opens the possibility to test its role in models of erectile dysfunction.
Collapse
|
7
|
Kashgari FK, Ravna A, Sager G, Lyså R, Enyedy I, Dietrichs ES. Identification and experimental confirmation of novel cGMP efflux inhibitors by virtual ligand screening of vardenafil-analogues. Biomed Pharmacother 2020; 126:110109. [PMID: 32229414 DOI: 10.1016/j.biopha.2020.110109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Clinical studies have reported overexpression of PDE5 and elevation of intracellular cyclic GMP in various types of cancer cells. ABCC5 transports cGMP out of the cells with high affinity. PDE5 inhibitors prevent both cellular metabolism and cGMP efflux by inhibiting ABCC5 as well as PDE5. Increasing intracellular cGMP is hypothesized to promote apoptosis and growth restriction in tumor cells and also has potential for clinical use in treatment of cardiovascular disease and erectile dysfunction. Vardenafil is a potent inhibitor of both PDE5 and ABCC5-mediated cGMP cellular efflux. Nineteen novel vardenafil analogs that have been predicted as potent inhibitors by VLS were chosen for tests of their ability to inhibit ATP- dependent transport of cGMP by measuring the accumulation of cyclic GMP in inside-out vesicles. AIM In this study, we investigated the ability of nineteen new compounds to inhibit ABCC5- mediated cGMP transport. We also determined the Ki values of the six most potent compounds. METHODS Preparation of human erythrocyte inside out vesicles and transport assay. RESULTS Ki values for six of nineteen compounds that showed more than 50 % inhibition of cGMP transport in the screening test were determined and ranged from 1.1 to 23.1 μM. One compound was significantly more potent than the positive control, sildenafil. CONCLUSION Our findings show that computational screening correctly identified vardenafil-analogues that potently inhibit cGMP efflux-pumps from cytosol and could have substantial clinical potential in treatment of patients with diverse disorders.
Collapse
Affiliation(s)
- Farzane Kuresh Kashgari
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aina Ravna
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Georg Sager
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; Department of Clinical Pharmacology, Division of Diagnostic Services, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Roy Lyså
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Erik Sveberg Dietrichs
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; Department of Clinical Pharmacology, Division of Diagnostic Services, University Hospital of North Norway, 9038 Tromsø, Norway.
| |
Collapse
|
8
|
de Oliveira MG, Rojas-Moscoso JA, Bertollotto GM, Candido TZ, Kiguti LRDA, Pupo AS, Antunes E, De Nucci G, Mónica FZ. Mirabegron elicits rat corpus cavernosum relaxation and increases in vivo erectile response. Eur J Pharmacol 2019; 858:172447. [PMID: 31228454 DOI: 10.1016/j.ejphar.2019.172447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Mirabegron is the first β3-adrenoceptor agonist approved on the market and may offer beneficial pharmacological action in patients with overactive bladder and erectile dysfunction. Here, we further investigate the mechanisms by which mirabegron induces rat corpus cavernosum (CC) relaxation. Adult male Wistar rats were used. The CC were isolated for in vitro functional assays and β-adrenoceptors subtypes mRNA expression evaluation. Animals were treated orally with mirabegron (30 mg/kg, 3 h), tadalafil (10 mg/kg, 3 h) or both for intracavernous pressure (ICP). Intracellular levels of cAMP and cGMP were also determined. The β1-, β2- and β3-adrenoceptors subtypes were expressed in rat CC. Mirabegron produced concentration-dependent CC relaxations that were unaffected by the β1-, β2- or β3-adrenoceptor antagonists atenolol (1 μM), ICI-118,551 (1 μM) and L748,337 (10 μM), respectively. Mirabegron-induced relaxations were not affected by the phosphodiesterase type 4 inhibitor, rolipram, or the adenylyl cyclase selective inhibitor, SQ 22,536. Potassium channel- or calcium influx-blockade are not involved in mirabegron-induced relaxations. In contrast, mirabegron produced rightward shifts in the contractile response induced by the α1-adrenoceptor agonist, phenylephrine. Finally, cavernous nerve stimulation caused frequency-dependent ICP increases, which were significantly increased in rats treated with mirabegron in a similar degree of tadalafil-treated rat, without promoting a significant cAMP or cGMP accumulation. Together, our results demonstrate that mirabegron induced CC relaxation through α1-adrenoceptor blockade. Care should be taken to translate the effect of mirabegron into the clinic, especially when using rat as an animal model of erectile dysfunction.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil.
| | | | - Gabriela M Bertollotto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Tuany Z Candido
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Luiz Ricardo de A Kiguti
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - André S Pupo
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| |
Collapse
|
9
|
Wu K, Mei C, Chen Y, Guo L, Yu Y, Huang D. C-type natriuretic peptide regulates sperm capacitation by the cGMP/PKG signalling pathway via Ca 2+ influx and tyrosine phosphorylation. Reprod Biomed Online 2019; 38:289-299. [PMID: 30655075 DOI: 10.1016/j.rbmo.2018.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Abstract
RESEARCH QUESTION What is the effect of C-type natriuretic peptide (CNP) on human sperm capacitation in vitro and what is the mechanism of this effect? DESIGN CNP/NPR-B expression in the female rat genital tract was examined by immunohistochemistry and western blot assay, and then the role of CNP in human sperm capacitation was determined. The signal transduction pathway of CNP in the process was determined to elucidate the regulation mechanism of CNP by enzyme-linked immunosorbent assay and flow cytometry. RESULTS Both CNP and NPR-B were expressed in the genital tract of female rats, especially in the mucosa epithelium cell of the oviduct; the CNP level in the rat oviduct was higher than that in the cervix. Both CNP and NPR-B level in the rat oviduct varied during the oestrus cycle, maximal expression being observed at proestrus. Furthermore, intracellular cGMP level in spermatozoa was significantly enhanced by CNP (P < 0.01). PKG activity was detected in the spermatozoa, and it can be activated by the CNP and 8-Br-cGMP (cGMP analogue). The PKG inhibitor KT5823 inhibited the effect of CNP on sperm hyperactivation and the acrosome reaction. Finally, Ca2+ and tyrosine phosphorylation levels in spermatozoa were markedly improved by CNP and 8-Br-cGMP but significantly inhibited by the addition of KT5823 (P < 0.05). CONCLUSIONS CNP secreted by the female genital tract might bind to NPR-B on the spermatozoa. It successively stimulated intracellular cGMP/PKG signalling, increased Ca2+ and tyrosine-phosphorylated proteins, promoted hyperactivation and induced the acrosome reaction, which ultimately facilitated sperm capacitation.
Collapse
Affiliation(s)
- Kejia Wu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Chunlei Mei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Chen
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Reproductive Medicine Centre of Jingzhou Central Hospital, Jingzhou 434000, China
| | - Lidan Guo
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Yu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Donghui Huang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Bertollotto GM, de Oliveira MG, Alexandre EC, Calmasini FB, Passos GR, Antunes E, Mónica FZ. Inhibition of Multidrug Resistance Proteins by MK 571 Enhances Bladder, Prostate, and Urethra Relaxation through cAMP or cGMP Accumulation. J Pharmacol Exp Ther 2018; 367:138-146. [PMID: 30108158 DOI: 10.1124/jpet.118.250076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
The biologic effect of cAMP and cGMP is terminated by phosphodiesterases and multidrug resistance proteins MRP4 and MRP5, which pump cyclic nucleotides out of the cell. Therefore, this study aimed to characterize the role of MRP inhibitor, MK 571 (3-[[[3-[(1E)-2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]propanoic acid), in the bladder, prostate, and urethra of male mice by means of functional assays, protein expression, and cyclic nucleotide quantification. The cumulative addition of MK 571 (1-30 µM) produced only small relaxation responses (approximately 25%) in all studied tissues. In the bladder, isoprenaline/fenoterol and forskolin concentration-dependently relaxed and MK 571 (20 µM) increased the maximal response values by 37% and 24%, respectively. When MK 571 was coincubated with fenoterol or forskolin, intracellular levels of cAMP and protein expression of phospho-vasodilator-stimulated phosphoprotein (p-VASP) Ser157 were significantly greater compared with bladders stimulated with fenoterol or forskolin alone. In the prostate and urethra, sodium nitroprusside concentration-dependently relaxed and MK 571 (20 µM) significantly increased relaxation responses by 70% and 56%, respectively, accompanied by greater intracellular levels of cGMP and protein expression of p-VASP Ser239 in the prostate. Tadalafil and BAY 41-2272 (5-cyclopropyl-2-[1-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-4-pyrimidinamine) also relaxed the prostate and urethra, respectively, and MK 571 markedly enhanced this response. The stable analog of cGMP (8-Br-cGMP) induced concentration-dependent relaxation responses in the prostate and urethra, and MK 571 significantly increased the relaxation response. In conclusion, to our knowledge, this is the first study to show that efflux transporters are physiologically active in the bladder, prostate, and urethra to control intracellular levels of cAMP or cGMP.
Collapse
Affiliation(s)
- Gabriela Maria Bertollotto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela Reolon Passos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|