1
|
Jorgez CJ, Chahdi A, Flores H, O'Neill M, Seth A. Role of Kctd13 in modulating AR and SOX9 expression in different penile cell populations. Andrology 2025. [PMID: 39888193 DOI: 10.1111/andr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Micropenis is a condition with significant physical and psychological implications caused mainly by decreased androgen action in penile development. Kctd13-knockout (Kctd13-KO) mice have micropenis, cryptorchidism, and fertility defects because of reduced levels of androgen receptor (AR) and SOX9. We hypothesized that normalizing the levels of AR and SOX9 in the Kctd13-KO penis could help us to understand the mechanism of action of these signaling pathways on penile development. METHODS We generated transgenic mice lacking Kctd13 and conditionally expressing AR in the urethral mesenchyme after Cre activation with Twist2cre (Kctd13-KO; AR-CMV; Twist2cre; herein called AR+), and Sox9 in the urethral epithelium after Cre activation with Shhcre (Kctd13-KO; Sox9-CAG; Shhcre; herein called SOX9+). Mice penile morphology, fertility, and the effect of KCTD13 on AR and SOX9 ubiquitination were evaluated. RESULTS AND DISCUSSION Kctd13-KO micropenis phenotype was rescued after increasing levels of penile AR or SOX9 as transgenic AR+ and SOX9+ mice have longer penile lengths than Kctd13-KO mice and are comparable to WT mice. In addition, male-urogenital-mating-protuberance and the baculum were significantly shorter and narrower in Kctd13-KO mice compared with transgenic AR+ and SOX9+ mice. The position of the urethral meatus was similar and orthotopic in location in Kctd13-KO, AR+, SOX9+, and WT penises indicating that none of these mice had hypospadias. The subfertility of AR+ and SOX9+ mice was improved. The ectopic expression of KCTD13 in HEK293 cells strongly reduced AR ubiquitination which is abolished when the proteasome pathway is inhibited and this process is mediated by the ubiquitin ligase, STUB1. The effect of KCTD13 on SOX9 ubiquitination is minimal. CONCLUSION KCTD13 regulates AR ubiquitination by modulating STUB1 binding to AR. Penile restoration of AR and SOX9 improved penile development in Kctd13-KO mice allowing us to discern the contribution from individual signaling pathways and cell types in penile development.
Collapse
Affiliation(s)
- Carolina J Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida, USA
- University of Central Florida, Orlando, Florida, USA
| | - Ahmed Chahdi
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida, USA
- University of Central Florida, Orlando, Florida, USA
| | - Hunter Flores
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Marisol O'Neill
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Seth
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida, USA
- University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Seth A, Rivera A, Choi IS, Medina-Martinez O, Lewis S, O’Neill M, Ridgeway A, Moore J, Jorgez C, Lamb DJ. Gene dosage changes in KCTD13 result in penile and testicular anomalies via diminished androgen receptor function. FASEB J 2022; 36:e22567. [PMID: 36196997 PMCID: PMC10538574 DOI: 10.1096/fj.202200558r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023]
Abstract
Despite the high prevalence of hypospadias and cryptorchidism, the genetic basis for these conditions is only beginning to be understood. Using array-comparative-genomic-hybridization (aCGH), potassium-channel-tetramerization-domain-containing-13 (KCTD13) encoded at 16p11.2 was identified as a candidate gene involved in hypospadias, cryptorchidism and other genitourinary (GU) tract anomalies. Copy number variants (CNVs) at 16p11.2 are among the most common syndromic genomic variants identified to date. Many patients with CNVs at this locus exhibit GU and/or neurodevelopmental phenotypes. KCTD13 encodes a substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (B-cell receptor (BCR) [BTB (the BTB domain is a conserved motif involved in protein-protein interactions) Cullin3 complex RING protein Rbx1] E3-ubiqutin-protein-ligase complex), which has essential roles in the regulation of cellular cytoskeleton, migration, proliferation, and neurodevelopment; yet its role in GU development is unknown. The prevalence of KCTD13 CNVs in patients with GU anomalies (2.58%) is significantly elevated when compared with patients without GU anomalies or in the general population (0.10%). KCTD13 is robustly expressed in the developing GU tract. Loss of KCTD13 in cell lines results in significantly decreased levels of nuclear androgen receptor (AR), suggesting that loss of KCTD13 affects AR sub-cellular localization. Kctd13 haploinsufficiency and homozygous deletion in mice cause a significant increase in the incidence of cryptorchidism and micropenis. KCTD13-deficient mice exhibit testicular and penile abnormalities together with significantly reduced levels of nuclear AR and SOX9. In conclusion, gene-dosage changes of murine Kctd13 diminish nuclear AR sub-cellular localization, as well as decrease SOX9 expression levels which likely contribute in part to the abnormal GU tract development in Kctd13 mouse models and in patients with CNVs in KCTD13.
Collapse
Affiliation(s)
- Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Surgery, Nemours Children’s Hospital, Orlando, Florida 32827
| | - Armando Rivera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - In-Seon Choi
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Olga Medina-Martinez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Shaye Lewis
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Marisol O’Neill
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Alex Ridgeway
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Joshua Moore
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Carolina Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Dolores J. Lamb
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- The James Buchanan Brady Foundation Department of Urology, Center for Reproductive Genomics and Englander Institute for Personalized Medicine, Weill Cornell Medical College
| |
Collapse
|
3
|
Kogan MI, Popov IV, Kirichenko EY, Mitrin BI, Sadyrin EV, Kulaeva ED, Popov IV, Kulba SN, Logvinov AK, Akimenko MA, Pasechnik DG, Tkachev SY, Karnaukhov NS, Lapteva TO, Sukhar IA, Maksimov AY, Ermakov AM. X-ray micro-computed tomography in the assessment of penile cavernous fibrosis in a rabbit castration model. Andrology 2021; 9:1467-1480. [PMID: 34236146 DOI: 10.1111/andr.13077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Current assessment methods of penile cavernous fibrosis in animal models have limitations due to the inability to provide complex and volume analysis of fibrotic alterations. OBJECTIVE The aim was to evaluate micro-computed tomography (micro-CT) for assessment of cavernous fibrosis and compare it with histological, histochemical, immunohistochemical, and RT-PCR analysis. MATERIALS AND METHODS A controlled trial was performed involving 25 New Zealand male rabbits with induced testosterone deficiency by orchidectomy. Penile samples were obtained before and after 7, 14, 21, 84 days from orchidectomy. We consistently performed: a) gray value analysis of corpora cavernosa 3D models reconstructed after micro-CT; b) morphometry of smooth muscles/connective tissue ratio, collagen type I/III ratio, and area of TGF-beta-1 expression in corpora cavernosa; c) RT-PCR of TGF-beta-1 expression. RESULTS Micro-CT allowed visualization of penile structures at the resolution comparable to light microscopy. Gray values of corpora cavernosa decreased from 1673 (1512-1773) on the initial day to 1184 (1089-1232) on 21 day (p < 0,005); however, on 84 day, it increased to 1610 (1551-1768). At 21 and 84 days, there were observed a significant decrease in smooth muscle/connective tissue ratio and a significant increase in collagen type I/III ratio (p < 0,05). TGF-beta1 expression increased on 84 day according to immunohistochemistry (p < 0,005). RT-PCR was impossible to conduct due to the absence of RNA in obtained samples after micro-CT. DISCUSSION AND CONCLUSIONS Micro-CT provided 3D visualization of entire corpora cavernosa and assessment of radiodensity alterations by gray value analysis in fibrosis progression. We speculate that gray value changes at early and late fibrosis stages could be related to tissue reorganization. RT-PCR is impossible to conduct on tissue samples studied by micro-CT due to RNA destruction. We also suggest that micro-CT could negatively affect the immunohistochemical outcome, as a significant increase of TGF-beta-1 expression occurs later than histological fibrotic signs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- M I Kogan
- Department of urology and reproductive health (with the course of pediatric urology-andrology), Rostov State Medical University, Rostov-on-Don, Russian Federation
| | - Igor V Popov
- Department of urology and reproductive health (with the course of pediatric urology-andrology), Rostov State Medical University, Rostov-on-Don, Russian Federation.,Faculty "Bioengineering and veterinary medicine", Don State Technical University, Rostov-on-Don, Russian Federation
| | - E Y Kirichenko
- Faculty "Bioengineering and veterinary medicine", Don State Technical University, Rostov-on-Don, Russian Federation.,Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, Russian Federation
| | - B I Mitrin
- Research and Education Centre "Materials", Don State Technical University, Rostov-on-Don, Russian Federation
| | - E V Sadyrin
- Research and Education Centre "Materials", Don State Technical University, Rostov-on-Don, Russian Federation
| | - E D Kulaeva
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Ilya V Popov
- Department of urology and reproductive health (with the course of pediatric urology-andrology), Rostov State Medical University, Rostov-on-Don, Russian Federation.,Faculty "Bioengineering and veterinary medicine", Don State Technical University, Rostov-on-Don, Russian Federation
| | - S N Kulba
- Faculty "Bioengineering and veterinary medicine", Don State Technical University, Rostov-on-Don, Russian Federation
| | - A K Logvinov
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, Russian Federation
| | - M A Akimenko
- Faculty "Bioengineering and veterinary medicine", Don State Technical University, Rostov-on-Don, Russian Federation.,Department of medical biology and genetics, Rostov State Medical University, Rostov-on-Don, Russian Federation
| | - D G Pasechnik
- Faculty "Bioengineering and veterinary medicine", Don State Technical University, Rostov-on-Don, Russian Federation
| | - S Yu Tkachev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - N S Karnaukhov
- Moscow Clinical Research Center named after A.S. Loginov, Moscow, Russian Federation
| | - T O Lapteva
- National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation
| | - I A Sukhar
- National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation
| | - A Yu Maksimov
- National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation
| | - A M Ermakov
- Faculty "Bioengineering and veterinary medicine", Don State Technical University, Rostov-on-Don, Russian Federation
| |
Collapse
|
4
|
Anatomy of the mouse penis and internal prepuce. Differentiation 2020; 116:26-37. [PMID: 33181401 DOI: 10.1016/j.diff.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023]
Abstract
This paper addresses a confusing issue of preputial anatomy of the mouse. The term "internal prepuce" was used in 2013 to describe a preputial structure integral to the mouse glans penis. Subsequently in 2015 the same term was applied by another group to describe entirely different morphology, generating confusion in the literature. Because it is inappropriate to use the same term to describe entirely different structures, we take this opportunity to provide further descriptive information on the internal prepuce of the mouse employing gross dissection, analysis of serial histologic section sets, three-dimensional reconstruction, scanning electron microscopy and immunohistochemistry. For this purpose, we review and illustrate the relevant literature and provide some additional new data using standard morphological techniques including immunohistochemistry. The mouse internal prepuce is integral to the glans penis and clearly is involved in sexual function in so far as it contains a major erectile body innervated by penile nerves. The development of the mouse internal prepuce is described for the first time and related to the development of the corpus cavernosum glandis.
Collapse
|
5
|
Lin D, Liu P, Wang G, Zhang W, Sun N. The distribution of Preputial vessels in different severity of rat congenital hypospadias model: imaging study using micro-computerized tomography. BMC Urol 2019; 19:111. [PMID: 31703582 PMCID: PMC6842185 DOI: 10.1186/s12894-019-0547-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Micro-computerized tomography (micro-CT) is considered as an innovative non-invasive and high-resolution imaging technology. The current research aims to reconstruct the distribution of preputial vessels in different severity of rat congenital hypospadias model by micro-CT, and to provide an anatomic basis for the selection of preputial vessel pedicle flaps in surgery. METHODS Pregnant rats were exposed to finasteride from gestational day 12 to 17. Depending on the position of the urethral meatus, the pups were divided into normal, mild hypospadias and severe hypospadias groups. Six months after birth, the preputial blood vessels were observed in vascular perfusion with Microfil (a silicone-based polymer) and scanned by micro-CT. CTvox and NRecon were utilized to reconstruct 3-dimentional (3D) images. A pathological analysis of the specimen was taken in order to determine the position of Microfil. RESULTS The normal group and the mild hypospadias group had similar preputial image characteristics. At the junction of the inner and outer prepuce, the deep layer vessels of the superficial fascia were transversely distributed and formed a vascular ring-like structure. Among the severe hypospadias group, five had sufficient blood circulation while six had insufficient blood circulation. In sufficient blood circulation type, the ring-like vessels were found at the junction of the inner and outer prepuce similar to that of the normal and mild hypospadias group. However, only a small amount of capillary supply to this area in the insufficient type. CONCLUSION The junction of the inner and outer prepuce with abundant blood circulation was suitable to be a vascular pedicle flap. The tubularized preputial island flaps were consistent with the ring-like vessels area, and the original blood supply was retained to the greatest extent.
Collapse
Affiliation(s)
- Defu Lin
- National Center for Children's Health, Beijing, China.,Department of Urology, Beijing Children's Hospital affiliated to Capital Medical University, No.56 Nanlishilu Rd, West District, Beijing, China
| | - Pei Liu
- National Center for Children's Health, Beijing, China.,Department of Urology, Beijing Children's Hospital affiliated to Capital Medical University, No.56 Nanlishilu Rd, West District, Beijing, China
| | - Guannan Wang
- National Center for Children's Health, Beijing, China.,Department of Urology, Beijing Children's Hospital affiliated to Capital Medical University, No.56 Nanlishilu Rd, West District, Beijing, China
| | - Weiping Zhang
- National Center for Children's Health, Beijing, China.,Department of Urology, Beijing Children's Hospital affiliated to Capital Medical University, No.56 Nanlishilu Rd, West District, Beijing, China
| | - Ning Sun
- National Center for Children's Health, Beijing, China. .,Department of Urology, Beijing Children's Hospital affiliated to Capital Medical University, No.56 Nanlishilu Rd, West District, Beijing, China.
| |
Collapse
|
6
|
Hsu CW, Kalaga S, Akoma U, Rasmussen TL, Christiansen AE, Dickinson ME. High Resolution Imaging of Mouse Embryos and Neonates with X-Ray Micro-Computed Tomography. ACTA ACUST UNITED AC 2019; 9:e63. [PMID: 31195428 DOI: 10.1002/cpmo.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Iodine-contrast micro-computed tomography (microCT) 3D imaging provides a non-destructive and high-throughput platform for studying mouse embryo and neonate development. Here we provide protocols on preparing mouse embryos and neonates between embryonic day 8.5 (E8.5) to postnatal day 4 (P4) for iodine-contrast microCT imaging. With the implementation of the STABILITY method to create a polymer-tissue hybrid structure, we have demonstrated that not only is soft tissue shrinkage minimized but also the minimum required time for soft tissue staining with iodine is decreased, especially for E18.5 to P4 samples. In addition, we also provide a protocol on using commercially available X-CLARITYTM hydrogel solution to create the similar polymer-tissue hybrid structure on delicate early post-implantation stage (E8.5 to E14.5) embryos. With its simple sample staining and mounting processes, this protocol is easy to adopt and implement for most of the commercially available, stand-alone microCT systems in order to study mouse development between early post-implantation to early postnatal stages. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Optical Imaging and Vital Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Optical Imaging and Vital Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - Uchechukwu Akoma
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Tara L Rasmussen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Optical Imaging and Vital Microscopy Core, Baylor College of Medicine, Houston, Texas.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| |
Collapse
|