1
|
Stock M, Popp N, Fiorentino J, Scialdone A. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data. Bioinformatics 2024; 40:btae267. [PMID: 38627250 PMCID: PMC11096270 DOI: 10.1093/bioinformatics/btae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/28/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
MOTIVATION In recent years, many algorithms for inferring gene regulatory networks from single-cell transcriptomic data have been published. Several studies have evaluated their accuracy in estimating the presence of an interaction between pairs of genes. However, these benchmarking analyses do not quantify the algorithms' ability to capture structural properties of networks, which are fundamental, e.g., for studying the robustness of a gene network to external perturbations. Here, we devise a three-step benchmarking pipeline called STREAMLINE that quantifies the ability of algorithms to capture topological properties of networks and identify hubs. RESULTS To this aim, we use data simulated from different types of networks as well as experimental data from three different organisms. We apply our benchmarking pipeline to four inference algorithms and provide guidance on which algorithm should be used depending on the global network property of interest. AVAILABILITY AND IMPLEMENTATION STREAMLINE is available at https://github.com/ScialdoneLab/STREAMLINE. The data generated in this study are available at https://doi.org/10.5281/zenodo.10710444.
Collapse
Affiliation(s)
- Marco Stock
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich 85354, Germany
| | - Niclas Popp
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
| | - Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich 85764, Germany
| |
Collapse
|
2
|
Lim S, Radicchi F, van den Heuvel MP, Sporns O. Discordant attributes of structural and functional brain connectivity in a two-layer multiplex network. Sci Rep 2019; 9:2885. [PMID: 30814615 PMCID: PMC6393555 DOI: 10.1038/s41598-019-39243-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022] Open
Abstract
Several studies have suggested that functional connectivity (FC) is constrained by the underlying structural connectivity (SC) and mutually correlated. However, not many studies have focused on differences in the network organization of SC and FC, and on how these differences may inform us about their mutual interaction. To explore this issue, we adopt a multi-layer framework, with SC and FC, constructed using Magnetic Resonance Imaging (MRI) data from the Human Connectome Project, forming a two-layer multiplex network. In particular, we examine node strength assortativity within and between the SC and FC layer. We find that, in general, SC is organized assortatively, indicating brain regions are on average connected to other brain regions with similar node strengths. On the other hand, FC shows disassortative mixing. This discrepancy is apparent also among individual resting-state networks within SC and FC. In addition, these patterns show lateralization, with disassortative mixing within FC subnetworks mainly driven from the left hemisphere. We discuss our findings in the context of robustness to structural failure, and we suggest that discordant and lateralized patterns of associativity in SC and FC may provide clues to understand laterality of some neurological dysfunctions and recovery.
Collapse
Affiliation(s)
- Sol Lim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Brain Mapping Unit, Department of Psychiatry, Cambridge University, Cambridge, CB2 3EB, United Kingdom.
| | - Filippo Radicchi
- Center for Complex Networks and Systems Research, School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Neuroscience, Section Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Department of Clinical Genetics, UMC Amsterdam, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Network Science Institute, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
3
|
Payne JL, Wagner A. Mechanisms of mutational robustness in transcriptional regulation. Front Genet 2015; 6:322. [PMID: 26579194 PMCID: PMC4621482 DOI: 10.3389/fgene.2015.00322] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify.
Collapse
Affiliation(s)
- Joshua L Payne
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland ; The Santa Fe Institute Santa Fe, NM, USA
| |
Collapse
|
4
|
Basu S, Maulik U. Community detection based on strong Nash stable graph partition. SOCIAL NETWORK ANALYSIS AND MINING 2015. [DOI: 10.1007/s13278-015-0299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Pechenick DA, Payne JL, Moore JH. Phenotypic robustness and the assortativity signature of human transcription factor networks. PLoS Comput Biol 2014; 10:e1003780. [PMID: 25121490 PMCID: PMC4133045 DOI: 10.1371/journal.pcbi.1003780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/30/2014] [Indexed: 11/21/2022] Open
Abstract
Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time. Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs) to DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs, giving rise to a transcription factor network (TFN), wherein nodes represent TFs and directed edges denote regulatory interactions between TFs. Computational studies have linked several topological properties of TFNs — such as their degree distribution — with the robustness of a TFN's gene expression phenotype to genetic and environmental perturbation. Another important topological property is assortativity, which measures the tendency of nodes with similar numbers of edges to connect. In directed networks, assortativity comprises four distinct components that collectively form an assortativity signature. We know very little about how a TFN's assortativity signature affects the robustness of its gene expression phenotype to perturbation. While recent theoretical results suggest that increasing one specific component of a TFN's assortativity signature leads to increased phenotypic robustness, the biological context of this finding is currently limited because the assortativity signatures of real-world TFNs have not been characterized. It is therefore unclear whether these earlier theoretical findings are biologically relevant. Moreover, it is not known how the other three components of the assortativity signature contribute to the phenotypic robustness of TFNs. Here, we use publicly available DNaseI-seq data to measure the assortativity signatures of genome-wide TFNs in 41 distinct human cell and tissue types. We find that all TFNs share a common assortativity signature and that this signature confers phenotypic robustness to model TFNs. Lastly, we determine the extent to which each of the four components of the assortativity signature contributes to this robustness. The cells of living organisms do not concurrently express their entire complement of genes. Instead, they regulate their gene expression, and one consequence of this is the potential for different cells to adopt different stable gene expression patterns. For example, the development of an embryo necessitates that cells alter their gene expression patterns in order to differentiate. These gene expression phenotypes are largely robust to genetic mutation, and one source of this robustness may reside in the network structure of interacting molecules that underlie genetic regulation. Theoretical studies of regulatory networks have linked network structure to robustness; however, it is also necessary to more extensively characterize real-world regulatory networks in order to understand which structural properties may be biologically meaningful. We recently used theoretical models to show that a particular structural property, degree assortativity, is linked to robustness. Here, we measure the assortativity of human regulatory networks in 41 distinct cell and tissue types. We then develop a theoretical framework to explore how this structural property affects robustness, and we find that the gene expression phenotypes of human regulatory networks are more robust than expected by chance alone.
Collapse
Affiliation(s)
- Dov A. Pechenick
- Computational Genetics Laboratory, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Joshua L. Payne
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jason H. Moore
- Computational Genetics Laboratory, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
6
|
Payne JL, Moore JH, Wagner A. Robustness, evolvability, and the logic of genetic regulation. ARTIFICIAL LIFE 2014; 20:111-26. [PMID: 23373974 PMCID: PMC4226432 DOI: 10.1162/artl_a_00099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of regulating gene products, which bind to a gene's cis-regulatory region. This region encodes an input-output function, referred to as signal-integration logic, that maps a specific combination of regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all possible signal-integration functions is vast and the mapping from input to output is many-to-one: For the same set of inputs, many functions (genotypes) yield the same expression output (phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield identical gene expression patterns within a computational model of gene regulatory circuits. Our goal is to characterize the relationship between robustness and evolvability in the signal-integration space of regulatory circuits, and to understand how these properties vary between the genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic robustness are skewed, so that the majority of signal-integration functions are robust to perturbation. We show that the connected set of genotypes that make up a given phenotype are constrained to specific regions of the space of all possible signal-integration functions, but that as the distance between genotypes increases, so does their capacity for unique innovations. In addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the implications of these latter observations for mutation-based evolution by conducting random walks between randomly chosen source and target phenotypes. We demonstrate that the time required to identify the target phenotype is independent of the properties of the source phenotype.
Collapse
Affiliation(s)
- Joshua L. Payne
- University of Zurich, Institute of Evolutionary Biology and Environmental Studies, Building Y27-J-48, Winterhurerstrasse 190, CH-8057 Zurich, Switzerland, phone:+41-44-635-6147
| | - Jason H. Moore
- Dartmouth College, Computational Genetics Laboratory, HB 7937, One Medical Center Drive, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA, phone: 1-603-653-9939
| | - Andreas Wagner
- University of Zurich, Institute of Evolutionary Biology and Environmental Studies, Building Y27-J-54, Winterhurerstrasse 190, CH-8057 Zurich, Switzerland and The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA, phone:+41-44-635-6142
| |
Collapse
|
7
|
Sadasivam RS, Volz EM, Kinney RL, Rao SR, Houston TK. Share2Quit: Web-Based Peer-Driven Referrals for Smoking Cessation. JMIR Res Protoc 2013; 2:e37. [PMID: 24067329 PMCID: PMC3786127 DOI: 10.2196/resprot.2786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/28/2013] [Indexed: 11/16/2022] Open
Abstract
Background Smoking is the number one preventable cause of death in the United States. Effective Web-assisted tobacco interventions are often underutilized and require new and innovative engagement approaches. Web-based peer-driven chain referrals successfully used outside health care have the potential for increasing the reach of Internet interventions. Objective The objective of our study was to describe the protocol for the development and testing of proactive Web-based chain-referral tools for increasing the access to Decide2Quit.org, a Web-assisted tobacco intervention system. Methods We will build and refine proactive chain-referral tools, including email and Facebook referrals. In addition, we will implement respondent-driven sampling (RDS), a controlled chain-referral sampling technique designed to remove inherent biases in chain referrals and obtain a representative sample. We will begin our chain referrals with an initial recruitment of former and current smokers as seeds (initial participants) who will be trained to refer current smokers from their social network using the developed tools. In turn, these newly referred smokers will also be provided the tools to refer other smokers from their social networks. We will model predictors of referral success using sample weights from the RDS to estimate the success of the system in the targeted population. Results This protocol describes the evaluation of proactive Web-based chain-referral tools, which can be used in tobacco interventions to increase the access to hard-to-reach populations, for promoting smoking cessation. Conclusions Share2Quit represents an innovative advancement by capitalizing on naturally occurring technology trends to recruit smokers to Web-assisted tobacco interventions.
Collapse
Affiliation(s)
- Rajani S Sadasivam
- Division of Health Informatics & Implementation Science, Quantitative Health Sciences, The University of Massachusetts Medical School, Worcester, MA, United States.
| | | | | | | | | |
Collapse
|
8
|
Pechenick DA, Moore JH, Payne JL. The influence of assortativity on the robustness and evolvability of gene regulatory networks upon gene birth. J Theor Biol 2013; 330:26-36. [PMID: 23542384 PMCID: PMC3672371 DOI: 10.1016/j.jtbi.2013.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/15/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
Gene regulatory networks (GRNs) represent the interactions between genes and gene products, which drive the gene expression patterns that produce cellular phenotypes. GRNs display a number of characteristics that are beneficial for the development and evolution of organisms. For example, they are often robust to genetic perturbation, such as mutations in regulatory regions or loss of gene function. Simultaneously, GRNs are often evolvable as these genetic perturbations are occasionally exploited to innovate novel regulatory programs. Several topological properties, such as degree distribution, are known to influence the robustness and evolvability of GRNs. Assortativity, which measures the propensity of nodes of similar connectivity to connect to one another, is a separate topological property that has recently been shown to influence the robustness of GRNs to point mutations in cis-regulatory regions. However, it remains to be seen how assortativity may influence the robustness and evolvability of GRNs to other forms of genetic perturbation, such as gene birth via duplication or de novo origination. Here, we employ a computational model of genetic regulation to investigate whether the assortativity of a GRN influences its robustness and evolvability upon gene birth. We find that the robustness of a GRN generally increases with increasing assortativity, while its evolvability generally decreases. However, the rate of change in robustness outpaces that of evolvability, resulting in an increased proportion of assortative GRNs that are simultaneously robust and evolvable. By providing a mechanistic explanation for these observations, this work extends our understanding of how the assortativity of a GRN influences its robustness and evolvability upon gene birth.
Collapse
Affiliation(s)
- Dov A. Pechenick
- Computational Genetics Laboratory, Dartmouth College, Hanover, New Hampshire, USA
| | - Jason H. Moore
- Computational Genetics Laboratory, Dartmouth College, Hanover, New Hampshire, USA
| | - Joshua L. Payne
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Roy S. Systems biology beyond degree, hubs and scale-free networks: the case for multiple metrics in complex networks. SYSTEMS AND SYNTHETIC BIOLOGY 2012; 6:31-4. [PMID: 23730362 DOI: 10.1007/s11693-012-9094-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/25/2022]
Abstract
Modeling and topological analysis of networks in biological and other complex systems, must venture beyond the limited consideration of very few network metrics like degree, betweenness or assortativity. A proper identification of informative and redundant entities from many different metrics, using recently demonstrated techniques, is essential. A holistic comparison of networks and growth models is best achieved only with the use of such methods.
Collapse
Affiliation(s)
- Soumen Roy
- Bose Institute, 93/1 Acharya PC Roy Road, Kolkata, 700 009 India
| |
Collapse
|