1
|
Lever JEP, Turner KB, Fernandez CM, Leung HM, Hussain SS, Shei RJ, Lin VY, Birket SE, Chu KK, Tearney GJ, Rowe SM, Solomon GM. Metachrony drives effective mucociliary transport via a calcium-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2024; 327:L282-L292. [PMID: 38860289 PMCID: PMC11444503 DOI: 10.1152/ajplung.00392.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
The mucociliary transport apparatus is critical for maintaining lung health via the coordinated movement of cilia to clear mucus and particulates. A metachronal wave propagates across the epithelium when cilia on adjacent multiciliated cells beat slightly out of phase along the proximal-distal axis of the airways in alignment with anatomically directed mucociliary clearance. We hypothesized that metachrony optimizes mucociliary transport (MCT) and that disruptions of calcium signaling would abolish metachrony and decrease MCT. We imaged bronchi from human explants and ferret tracheae using micro-optical coherence tomography (µOCT) to evaluate airway surface liquid depth (ASL), periciliary liquid depth (PCL), cilia beat frequency (CBF), MCT, and metachrony in situ. We developed statistical models that included covariates of MCT. Ferret tracheae were treated with BAPTA-AM (chelator of intracellular Ca2+), lanthanum chloride (nonpermeable Ca2+ channel competitive antagonist), and repaglinide (inhibitor of calaxin) to test calcium dependence of metachrony. We demonstrated that metachrony contributes to mucociliary transport of human and ferret airways. MCT was augmented in regions of metachrony compared with nonmetachronous regions by 48.1%, P = 0.0009 or 47.5%, P < 0.0020 in humans and ferrets, respectively. PCL and metachrony were independent contributors to MCT rate in humans; ASL, CBF, and metachrony contribute to ferret MCT rates. Metachrony can be disrupted by interference with calcium signaling including intracellular, mechanosensitive channels, and calaxin. Our results support that the presence of metachrony augments MCT in a calcium-dependent mechanism.NEW & NOTEWORTHY We developed a novel imaging-based analysis to detect coordination of ciliary motion and optimal coordination, a process called metachrony. We found that metachrony is key to the optimization of ciliary-mediated mucus transport in both ferret and human tracheal tissue. This process appears to be regulated through calcium-dependent mechanisms. This study demonstrates the capacity to measure a key feature of ciliary coordination that may be important in genetic and acquired disorders of ciliary function.
Collapse
Grants
- F31 HL146083 NHLBI NIH HHS
- 3T32GM008361-30S1 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL153079 NHLBI NIH HHS
- 2T32HL105346-11A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM008361 NIGMS NIH HHS
- Solomon 20Y0 Cystic Fibrosis Foundation (CFF)
- P30 DK072482 NIDDK NIH HHS
- 5F31HL146083-02 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816 NHLBI NIH HHS
- K08 HL138153 NHLBI NIH HHS
- 2P30DK072482-12 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- T32 HL105346 NHLBI NIH HHS
- 1K08HL138153-01A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jacelyn E Peabody Lever
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Brett Turner
- Division of Pulmonary Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Courtney M Fernandez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Shah Saddad Hussain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ren-Jay Shei
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vivian Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Susan E Birket
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Steven M Rowe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - George M Solomon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Olivença DV, Davis JD, Kumbale CM, Zhao CY, Brown SP, McCarty NA, Voit EO. Mathematical models of cystic fibrosis as a systemic disease. WIREs Mech Dis 2023; 15:e1625. [PMID: 37544654 PMCID: PMC10843793 DOI: 10.1002/wsbm.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Cystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi-species bacterial communities, called "infection microbiomes," that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi-scale modeling framework, known as template-and-anchor modeling, that allows the gradual integration of refined sub-models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases. This article is categorized under: Congenital Diseases > Computational Models.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA
| | - Jacob D. Davis
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Conan Y. Zhao
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samuel P. Brown
- Department of Biological Sciences, Georgia Tech and Emory University, Atlanta, Georgia
| | - Nael A. McCarty
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Kim MD, Baumlin N, Dennis JS, Yoshida M, Kis A, Aguiar C, Schmid A, Mendes E, Salathe M. Losartan reduces cigarette smoke-induced airway inflammation and mucus hypersecretion. ERJ Open Res 2021; 7:00394-2020. [PMID: 33532463 PMCID: PMC7836504 DOI: 10.1183/23120541.00394-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 11/05/2022] Open
Abstract
The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-β1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-β1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-β1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-β signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-β1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.
Collapse
Affiliation(s)
- Michael D Kim
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - Nathalie Baumlin
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - John S Dennis
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Makoto Yoshida
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adrian Kis
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina Aguiar
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andreas Schmid
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eliana Mendes
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthias Salathe
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Karamaoun C, Sobac B, Mauroy B, Van Muylem A, Haut B. New insights into the mechanisms controlling the bronchial mucus balance. PLoS One 2018; 13:e0199319. [PMID: 29933368 PMCID: PMC6014679 DOI: 10.1371/journal.pone.0199319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022] Open
Abstract
In this work, we aim to analyze and compare the mechanisms controlling the volume of mucus in the bronchial region of the lungs of a healthy human adult, at rest and in usual atmospheric conditions. This analysis is based on a balance equation for the mucus in an airway, completed by a computational tool aiming at characterizing the evaporation, during respiration, of the water contained in the bronchial mucus. An idealized representation of the lungs, based on Weibel’s morphometric model, is used. The results indicate that the mechanisms controlling the volume of mucus in an airway depend on the localization of the airway in the bronchial region of the lungs. In the proximal generations, the volume of mucus in an airway is mainly controlled by the evaporation of the water it contains and the replenishment, with water, of the mucus layer by epithelial cells or the submucosal glands. Nevertheless, cilia beating in this part of the bronchial region remains of fundamental importance to transport the mucus and hence to eliminate dust and pathogens trapped in it. On the other hand, in the distal generations of the bronchial region, the volume of mucus in an airway is mainly controlled by the mucociliary transport and by the absorption of liquid by the epithelium. This absorption is a consequence of the mucus displacement by the cilia along generations with an interface between the epithelium and the airway surface layer of decreasing area. The numerical results obtained are in good agreement with previously published experimental data, thus validating our approach. We also briefly discuss how our results can improve the understanding and, possibly, the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Cyril Karamaoun
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Sobac
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
- * E-mail:
| | - Benjamin Mauroy
- Laboratoire J. A. Dieudonné, UMR CNRS 7351, Université Côte d’Azur, Nice, France
| | - Alain Van Muylem
- Chest Department, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Goralski JL, Wu D, Thelin WR, Boucher RC, Button B. The in vitro effect of nebulised hypertonic saline on human bronchial epithelium. Eur Respir J 2018; 51:13993003.02652-2017. [PMID: 29599187 DOI: 10.1183/13993003.02652-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/28/2018] [Indexed: 11/05/2022]
Abstract
Inhaled hypertonic saline (HS) is an effective therapy for muco-obstructive lung diseases. However, the mechanism of action and principles pertinent to HS administration remain unclear.An in vitro system aerosolised HS to epithelial cells at rates comparable to in vivo conditions. Airway surface liquid (ASL) volume and cell height responses were measured by confocal microscopy under normal and hyperconcentrated mucus states.Aerosolised HS produced a rapid increase in ASL height and decrease in cell height. Added ASL volume was quickly reabsorbed following termination of nebulisation, although cell height did not recover within the same time frame. ASL volume responses to repeated HS administrations were blunted, but could be restored by a hypotonic saline bolus interposed between HS administrations. HS-induced ASL hydration was prolonged with hyperconcentrated mucus on the airway surface, with more modest reductions in cell volume.Aerosolised HS produced osmotically induced increases in ASL height that were limited by active sodium absorption and cell volume-induced reductions in cell water permeability. Mucus on airway surfaces prolonged the effect of HS via mucus-dependent osmotic forces, suggesting that the duration of action of HS is increased in patients with hyperconcentrated mucus.
Collapse
Affiliation(s)
- Jennifer L Goralski
- Cystic Fibrosis Research and Treatment Center/Marsico Lung Institute, Chapel Hill, NC, USA.,Division of Pulmonary and Critical Care Medicine, Dept of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Division of Pediatric Pulmonology, Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan Wu
- Cystic Fibrosis Research and Treatment Center/Marsico Lung Institute, Chapel Hill, NC, USA
| | | | - Richard C Boucher
- Cystic Fibrosis Research and Treatment Center/Marsico Lung Institute, Chapel Hill, NC, USA.,Division of Pulmonary and Critical Care Medicine, Dept of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian Button
- Cystic Fibrosis Research and Treatment Center/Marsico Lung Institute, Chapel Hill, NC, USA.,Dept of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Huang Z, Lei K, He D, Xu Y, Williams J, Hu L, McNeil M, Ruso JM, Liu Z, Guo Z, Wang Z. Self-regulation in chemical and bio-engineering materials for intelligent systems. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2018; 3:40-48. [PMID: 34113747 PMCID: PMC8188858 DOI: 10.1049/trit.2018.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide research field and proven to be of great interest for use in a biomedical system, mechanical system, physical system, as the fact of something such as an organisation regulating itself without intervention from external perturbation. Here, they focus on the most recent discoveries of self-regulation phenomenon and progress in utilising the self-regulation design. This paper concludes by examining various practical applications of the remarkable materials and systems including manipulation of the oil/water interface, cell out-layer structure, radical activity, electron energy level, and mechanical structure of nanomaterials. From material science to bioengineering, self-regulation proves to be not only viable, but increasingly useful in many applications. As part of intelligent engineering, self-regulatory materials are expected to be more used as integrated intelligent components.
Collapse
Affiliation(s)
- Zhongyuan Huang
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, Henan, People’s Republic of China
| | - Kewei Lei
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
| | - Dan He
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Pharmaceutical Analysis, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong, People’s Republic of China
| | - Jacob Williams
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Liu Hu
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Macy McNeil
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhe Wang
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
7
|
Newby JM, Seim I, Lysy M, Ling Y, Huckaby J, Lai SK, Forest MG. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Adv Drug Deliv Rev 2018; 124:64-81. [PMID: 29246855 PMCID: PMC5809312 DOI: 10.1016/j.addr.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
In mucosal drug delivery, two design goals are desirable: 1) insure drug passage through the mucosal barrier to the epithelium prior to drug removal from the respective organ via mucus clearance; and 2) design carrier particles to achieve a prescribed arrival time and drug uptake schedule at the epithelium. Both goals are achievable if one can control "one-sided" diffusive passage times of drug carrier particles: from deposition at the mucus interface, through the mucosal barrier, to the epithelium. The passage time distribution must be, with high confidence, shorter than the timescales of mucus clearance to maximize drug uptake. For 100nm and smaller drug-loaded nanoparticulates, as well as pure drug powders or drug solutions, diffusion is normal (i.e., Brownian) and rapid, easily passing through the mucosal barrier prior to clearance. Major challenges in quantitative control over mucosal drug delivery lie with larger drug-loaded nanoparticulates that are comparable to or larger than the pores within the mucus gel network, for which diffusion is not simple Brownian motion and typically much less rapid; in these scenarios, a timescale competition ensues between particle passage through the mucus barrier and mucus clearance from the organ. In the lung, as a primary example, coordinated cilia and air drag continuously transport mucus toward the trachea, where mucus and trapped cargo are swallowed into the digestive tract. Mucus clearance times in lung airways range from minutes to hours or significantly longer depending on deposition in the upper, middle, lower airways and on lung health, giving a wide time window for drug-loaded particle design to achieve controlled delivery to the epithelium. We review the physical and chemical factors (of both particles and mucus) that dictate particle diffusion in mucus, and the technological strategies (theoretical and experimental) required to achieve the design goals. First we describe an idealized scenario - a homogeneous viscous fluid of uniform depth with a particle undergoing passive normal diffusion - where the theory of Brownian motion affords the ability to rigorously specify particle size distributions to meet a prescribed, one-sided, diffusive passage time distribution. Furthermore, we describe how the theory of Brownian motion provides the scaling of one-sided diffusive passage times with respect to mucus viscosity and layer depth, and under reasonable caveats, one can also prescribe passage time scaling due to heterogeneity in viscosity and layer depth. Small-molecule drugs and muco-inert, drug-loaded carrier particles 100nm and smaller fall into this class of rigorously controllable passage times for drug delivery. Second we describe the prevalent scenarios in which drug-loaded carrier particles in mucus violate simple Brownian motion, instead exhibiting anomalous sub-diffusion, for which all theoretical control over diffusive passage times is lost, and experiments are prohibitive if not impossible to measure one-sided passage times. We then discuss strategies to overcome these roadblocks, requiring new particle-tracking experiments and emerging advances in theory and computation of anomalous, sub-diffusive processes that are necessary to predict and control one-sided particle passage times from deposition at the mucosal interface to epithelial uptake. We highlight progress to date, remaining hurdles, and prospects for achieving the two design goals for 200nm and larger, drug-loaded, non-dissolving, nanoparticulates.
Collapse
Affiliation(s)
- Jay M Newby
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ian Seim
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, United States
| | - Yun Ling
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, United States
| | - Justin Huckaby
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - M Gregory Forest
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
8
|
Wu D, Boucher RC, Button B, Elston T, Lin CL. An integrated mathematical epithelial cell model for airway surface liquid regulation by mechanical forces. J Theor Biol 2017; 438:34-45. [PMID: 29154907 DOI: 10.1016/j.jtbi.2017.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 01/17/2023]
Abstract
A robust method based on reverse engineering was utilized to construct the ion-channel conductance functions for airway epithelial sodium channels (ENaC), the cystic fibrosis transmembrane conductance regulator (CFTR), and calcium-activated chloride channels (CaCC). The ion-channel conductance models for both normal (NL) and cystic fibrosis (CF) airway epithelia were developed and then coupled to an adenosine triphosphate (ATP) metabolism model and a fluid transport model (collectively called the integrated cell model) to investigate airway surface liquid (ASL) volume regulation and hence mucus concentration, by mechanical forces in NL and CF human airways. The epithelial cell models for NL and CF required differences in Cl- secretion (decreased in CF) and Na+ absorption (raised in CF) to reproduce behaviors similar to in vitro epithelial cells exposed to mechanical forces (cyclic shear stress, cyclic compressive pressure and cilial strain) and selected modulators of ion channels and ATP release. The epithelial cell models were then used to investigate the effects of mechanical forces and evaporative flux on ASL and mucus homeostasis in both NL and CF airway epithelia. Because of reduced CF ASL volumes, CF mucus concentrations increased and produced a greater dependence of ASL volume regulation on cilia-mucus-ATP release interactions in CF than NL epithelial nodules. Similarly, the CF model was less tolerant to evaporation induced ASL volume reduction at all ATP release rates than the NL model. Consequently, this reverse engineered model appears to provide a robust tool for investigating CF pathophysiology and novel therapies.
Collapse
Affiliation(s)
- Dan Wu
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, 7008 Marsico Hall, Chapel Hill, NC 27599-7248, United States; Department of Mechanical and Industrial Engineering, The University of Iowa, 2406 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, United States
| | - Richard C Boucher
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, 7008 Marsico Hall, Chapel Hill, NC 27599-7248, United States.
| | - Brian Button
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, 7008 Marsico Hall, Chapel Hill, NC 27599-7248, United States
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Ching-Long Lin
- Department of Mechanical and Industrial Engineering, The University of Iowa, 2406 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, United States.
| |
Collapse
|
9
|
Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS One 2015; 10:e0127267. [PMID: 26024524 PMCID: PMC4449158 DOI: 10.1371/journal.pone.0127267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.
Collapse
|
10
|
Vasquez PA, Forest MG. Complex Fluids and Soft Structures in the Human Body. COMPLEX FLUIDS IN BIOLOGICAL SYSTEMS 2015. [DOI: 10.1007/978-1-4939-2065-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia. J Theor Biol 2014; 363:427-35. [PMID: 25159000 DOI: 10.1016/j.jtbi.2014.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 07/07/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO].
Collapse
|