1
|
Diaz Arenas C, Ardaševa A, Miller J, Mikheyev AS, Yokobayashi Y. Ribozyme Mutagenic Evolution: Mechanisms of Survival. ORIGINS LIFE EVOL B 2022; 51:321-339. [PMID: 34994918 DOI: 10.1007/s11084-021-09617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022]
Abstract
Primeval populations replicating at high error rates required a mechanism to overcome the accumulation of mutations and information deterioration. Known strategies to overcome mutation pressures include RNA processivity, epistasis, selection, and quasispecies. We investigated the mechanism by which small molecular ribozyme populations can survive under high error rates by propagating several lineages under different mutagen concentrations. We found that every population that evolved without mutagen went extinct, while those subjected to mutagenic evolution survived. To understand how they survived, we characterized the evolved genotypic diversity, the formation of genotype-genotype interaction networks, the fitness of the most common mutants for each enzymatic step, and changes in population size along the course of evolution. We found that the elevated mutation rate was necessary for the populations to survive in the novel environment, in which all the steps of the metabolism worked to promote the survival of even less catalytically efficient ligases. Besides, an increase in population size and the mutational coupling of genotypes in close-knit networks, which helped maintain or recover lost genotypes making their disappearance transient, prevented Muller's ratchet and extinction.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan. .,Yale University, New Haven, CT, USA.
| | - Aleksandra Ardaševa
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Jonathan Miller
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan.,Evolutionary Genomics Lab, Research School of Biology, Australian National University, Canberra, Australia
| | - Yohei Yokobayashi
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan
| |
Collapse
|
2
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
3
|
Tracking Cancer Genetic Evolution using OncoTrack. Sci Rep 2016; 6:29647. [PMID: 27412732 PMCID: PMC4944131 DOI: 10.1038/srep29647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/20/2016] [Indexed: 02/07/2023] Open
Abstract
It is difficult for existing methods to quantify, and track the constant evolution of cancers due to high heterogeneity of mutations. However, structural variations associated with nucleotide number changes show repeatable patterns in localized regions of the genome. Here we introduce SPKMG, which generalizes nucleotide number based properties of genes, in statistical terms, at the genome-wide scale. It is measured from the normalized amount of aligned NGS reads in exonic regions of a gene. SPKMG values are calculated within OncoTrack. SPKMG values being continuous numeric variables provide a statistical metric to track DNA level changes. We show that SPKMG measures of cancer DNA show a normative pattern at the genome-wide scale. The analysis leads to the discovery of core cancer genes and also provides novel dynamic insights into the stage of cancer, including cancer development, progression, and metastasis. This technique will allow exome data to also be used for quantitative LOH/CNV analysis for tracking tumour progression and evolution with a higher efficiency.
Collapse
|
4
|
Steinacher A, Bates DG, Akman OE, Soyer OS. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels. PLoS One 2016; 11:e0153295. [PMID: 27082741 PMCID: PMC4833316 DOI: 10.1371/journal.pone.0153295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
Abstract
Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.
Collapse
Affiliation(s)
| | - Declan G. Bates
- School of Engineering, University of Warwick, Warwick, United Kingdom
| | - Ozgur E. Akman
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, United Kingdom
- * E-mail: (OEA); (OSS)
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
- * E-mail: (OEA); (OSS)
| |
Collapse
|
5
|
Payne JL, Wagner A. Mechanisms of mutational robustness in transcriptional regulation. Front Genet 2015; 6:322. [PMID: 26579194 PMCID: PMC4621482 DOI: 10.3389/fgene.2015.00322] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify.
Collapse
Affiliation(s)
- Joshua L Payne
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland ; The Santa Fe Institute Santa Fe, NM, USA
| |
Collapse
|
6
|
|
7
|
Hsiao YT, Lee WP. Reverse engineering gene regulatory networks: coupling an optimization algorithm with a parameter identification technique. BMC Bioinformatics 2014; 15 Suppl 15:S8. [PMID: 25474560 PMCID: PMC4271569 DOI: 10.1186/1471-2105-15-s15-s8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background To infer gene regulatory networks from time series gene profiles, two important tasks that are related to biological systems must be undertaken. One task is to determine a valid network structure that has topological properties that can influence the network dynamics profoundly. The other task is to optimize the network parameters to minimize the accumulated discrepancy between the gene expression data and the values produced by the inferred network model. Though the above two tasks must be conducted simultaneously, most existing work addresses only one of the tasks. Results We propose an iterative approach that couples parameter identification and parameter optimization techniques, to address the two tasks simultaneously during network inference. This approach first identifies the most influential parameters against internal perturbations; this identification is based on sensitivity measurements. Then, a hybrid GA-PSO optimization method infers parameters in accordance with their criticalities. The proposed approach has been applied to several datasets, including subsets of the SOS DNA repair system in E. coli, the Rat central nervous system (CNS), and the protein glycosylation system of yeast S. cerevisiae. The result and analysis show that our approach can infer solutions to satisfy both the requirements of network structure and network behavior. Conclusions Network structure is an important though challenging issue to address in inferring sophisticated networks with biological details. In need of prior structural knowledge, we turn to measure parameter sensitivity instead to account for the network structure in an indirect way. By developing an integrated approach for considering both the network structure and behavior in the inference process, we can successfully infer critical gene interactions as well as valid time expression profiles.
Collapse
|
8
|
Pechenick DA, Payne JL, Moore JH. Phenotypic robustness and the assortativity signature of human transcription factor networks. PLoS Comput Biol 2014; 10:e1003780. [PMID: 25121490 PMCID: PMC4133045 DOI: 10.1371/journal.pcbi.1003780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/30/2014] [Indexed: 11/21/2022] Open
Abstract
Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time. Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs) to DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs, giving rise to a transcription factor network (TFN), wherein nodes represent TFs and directed edges denote regulatory interactions between TFs. Computational studies have linked several topological properties of TFNs — such as their degree distribution — with the robustness of a TFN's gene expression phenotype to genetic and environmental perturbation. Another important topological property is assortativity, which measures the tendency of nodes with similar numbers of edges to connect. In directed networks, assortativity comprises four distinct components that collectively form an assortativity signature. We know very little about how a TFN's assortativity signature affects the robustness of its gene expression phenotype to perturbation. While recent theoretical results suggest that increasing one specific component of a TFN's assortativity signature leads to increased phenotypic robustness, the biological context of this finding is currently limited because the assortativity signatures of real-world TFNs have not been characterized. It is therefore unclear whether these earlier theoretical findings are biologically relevant. Moreover, it is not known how the other three components of the assortativity signature contribute to the phenotypic robustness of TFNs. Here, we use publicly available DNaseI-seq data to measure the assortativity signatures of genome-wide TFNs in 41 distinct human cell and tissue types. We find that all TFNs share a common assortativity signature and that this signature confers phenotypic robustness to model TFNs. Lastly, we determine the extent to which each of the four components of the assortativity signature contributes to this robustness. The cells of living organisms do not concurrently express their entire complement of genes. Instead, they regulate their gene expression, and one consequence of this is the potential for different cells to adopt different stable gene expression patterns. For example, the development of an embryo necessitates that cells alter their gene expression patterns in order to differentiate. These gene expression phenotypes are largely robust to genetic mutation, and one source of this robustness may reside in the network structure of interacting molecules that underlie genetic regulation. Theoretical studies of regulatory networks have linked network structure to robustness; however, it is also necessary to more extensively characterize real-world regulatory networks in order to understand which structural properties may be biologically meaningful. We recently used theoretical models to show that a particular structural property, degree assortativity, is linked to robustness. Here, we measure the assortativity of human regulatory networks in 41 distinct cell and tissue types. We then develop a theoretical framework to explore how this structural property affects robustness, and we find that the gene expression phenotypes of human regulatory networks are more robust than expected by chance alone.
Collapse
Affiliation(s)
- Dov A. Pechenick
- Computational Genetics Laboratory, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Joshua L. Payne
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jason H. Moore
- Computational Genetics Laboratory, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
9
|
Payne JL, Wagner A. Latent phenotypes pervade gene regulatory circuits. BMC SYSTEMS BIOLOGY 2014; 8:64. [PMID: 24884746 PMCID: PMC4061115 DOI: 10.1186/1752-0509-8-64] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Latent phenotypes are non-adaptive byproducts of adaptive phenotypes. They exist in biological systems as different as promiscuous enzymes and genome-scale metabolic reaction networks, and can give rise to evolutionary adaptations and innovations. We know little about their prevalence in the gene expression phenotypes of regulatory circuits, important sources of evolutionary innovations. RESULTS Here, we study a space of more than sixteen million three-gene model regulatory circuits, where each circuit is represented by a genotype, and has one or more functions embodied in one or more gene expression phenotypes. We find that the majority of circuits with single functions have latent expression phenotypes. Moreover, the set of circuits with a given spectrum of functions has a repertoire of latent phenotypes that is much larger than that of any one circuit. Most of this latent repertoire can be easily accessed through a series of small genetic changes that preserve a circuit's main functions. Both circuits and gene expression phenotypes that are robust to genetic change are associated with a greater number of latent phenotypes. CONCLUSIONS Our observations suggest that latent phenotypes are pervasive in regulatory circuits, and may thus be an important source of evolutionary adaptations and innovations involving gene regulation.
Collapse
|
10
|
Gutiérrez J, Maere S. Modeling the evolution of molecular systems from a mechanistic perspective. TRENDS IN PLANT SCIENCE 2014; 19:292-303. [PMID: 24709144 DOI: 10.1016/j.tplants.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Systems biology-inspired genotype-phenotype mapping models are increasingly being used to study the evolutionary properties of molecular biological systems, in particular the general emergent properties of evolving systems, such as modularity, robustness, and evolvability. However, the level of abstraction at which many of these models operate might not be sufficient to capture all relevant intricacies of biological evolution in sufficient detail. Here, we argue that in particular gene and genome duplications, both evolutionary mechanisms of potentially major importance for the evolution of molecular systems and of special relevance to plant evolution, are not adequately accounted for in most GPM modeling frameworks, and that more fine-grained mechanistic models may significantly advance understanding of how gen(om)e duplication impacts molecular systems evolution.
Collapse
Affiliation(s)
- Jayson Gutiérrez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|