1
|
Liu T, Chen J, Zhang Q, Hippe K, Hunt C, Le T, Cao R, Tang H. The Development of Machine Learning Methods in discriminating Secretory Proteins of Malaria Parasite. Curr Med Chem 2021; 29:807-821. [PMID: 34636289 DOI: 10.2174/0929867328666211005140625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/28/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
Malaria caused by Plasmodium falciparum is one of the major infectious diseases in the world. It is essential to exploit an effective method to predict secretory proteins of malaria parasites to develop effective cures and treatment. Biochemical assays can provide details for accurate identification of the secretory proteins, but these methods are expensive and time-consuming. In this paper, we summarized the machine learning-based identification algorithms and compared the construction strategies between different computational methods. Also, we discussed the use of machine learning to improve the ability of algorithms to identify proteins secreted by malaria parasites.
Collapse
Affiliation(s)
- Ting Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Jiamao Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Qian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Kyle Hippe
- Department of Computer Science, Pacific Lutheran University. United States
| | - Cassandra Hunt
- Department of Computer Science, Pacific Lutheran University. United States
| | - Thu Le
- Department of Computer Science, Pacific Lutheran University. United States
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University. United States
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| |
Collapse
|
2
|
Feng P, Feng L, Tang C. Comparison and Analysis of Computational Methods for Identifying N6-Methyladenosine Sites in Saccharomyces cerevisiae. Curr Pharm Des 2021; 27:1219-1229. [PMID: 33167827 DOI: 10.2174/1381612826666201109110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND N6-methyladenosine (m6A) plays critical roles in a broad range of biological processes. Knowledge about the precise location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental techniques have made substantial contributions to identify m6A, they are still labor intensive and time consuming. As complement to experimental methods, in the past few years, a series of computational approaches have been proposed to identify m6A sites. METHODS In order to facilitate researchers to select appropriate methods for identifying m6A sites, it is necessary to conduct a comprehensive review and comparison of existing methods. RESULTS Since research works on m6A in Saccharomyces cerevisiae are relatively clear, in this review, we summarized recent progress of computational prediction of m6A sites in S. cerevisiae and assessed the performance of existing computational methods. Finally, future directions of computationally identifying m6A sites are presented. CONCLUSION Taken together, we anticipate that this review will serve as an important guide for computational analysis of m6A modifications.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Lijing Feng
- School of Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Chaohui Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| |
Collapse
|
3
|
Abstract
Background:
Bioluminescence is a unique and significant phenomenon in nature.
Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical
research, including for gene expression analysis and bioluminescence imaging technology. In recent
years, researchers have identified a number of methods for predicting bioluminescent proteins
(BLPs), which have increased in accuracy, but could be further improved.
Method:
In this study, a new bioluminescent proteins prediction method, based on a voting
algorithm, is proposed. Four methods of feature extraction based on the amino acid sequence were
used. 314 dimensional features in total were extracted from amino acid composition,
physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest
MCC value to establish the optimal prediction model, a voting algorithm was then used to build the
model. To create the best performing model, the selection of base classifiers and vote counting rules
are discussed.
Results:
The proposed model achieved 93.4% accuracy, 93.4% sensitivity and
91.7% specificity in the test set, which was better than any other method. A previous prediction of
bioluminescent proteins in three lineages was also improved using the model building method,
resulting in greatly improved accuracy.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
iBLP: An XGBoost-Based Predictor for Identifying Bioluminescent Proteins. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6664362. [PMID: 33505515 PMCID: PMC7808816 DOI: 10.1155/2021/6664362] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Bioluminescent proteins (BLPs) are a class of proteins that widely distributed in many living organisms with various mechanisms of light emission including bioluminescence and chemiluminescence from luminous organisms. Bioluminescence has been commonly used in various analytical research methods of cellular processes, such as gene expression analysis, drug discovery, cellular imaging, and toxicity determination. However, the identification of bioluminescent proteins is challenging as they share poor sequence similarities among them. In this paper, we briefly reviewed the development of the computational identification of BLPs and subsequently proposed a novel predicting framework for identifying BLPs based on eXtreme gradient boosting algorithm (XGBoost) and using sequence-derived features. To train the models, we collected BLP data from bacteria, eukaryote, and archaea. Then, for getting more effective prediction models, we examined the performances of different feature extraction methods and their combinations as well as classification algorithms. Finally, based on the optimal model, a novel predictor named iBLP was constructed to identify BLPs. The robustness of iBLP has been proved by experiments on training and independent datasets. Comparison with other published method further demonstrated that the proposed method is powerful and could provide good performance for BLP identification. The webserver and software package for BLP identification are freely available at http://lin-group.cn/server/iBLP.
Collapse
|
5
|
Abstract
During the last three decades or so, many efforts have been made to study the protein cleavage
sites by some disease-causing enzyme, such as HIV (Human Immunodeficiency Virus) protease
and SARS (Severe Acute Respiratory Syndrome) coronavirus main proteinase. It has become increasingly
clear <i>via</i> this mini-review that the motivation driving the aforementioned studies is quite wise,
and that the results acquired through these studies are very rewarding, particularly for developing peptide
drugs.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
6
|
Zhang D, Guan ZX, Zhang ZM, Li SH, Dao FY, Tang H, Lin H. Recent Development of Computational Predicting Bioluminescent Proteins. Curr Pharm Des 2020; 25:4264-4273. [PMID: 31696804 DOI: 10.2174/1381612825666191107100758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Bioluminescent Proteins (BLPs) are widely distributed in many living organisms that act as a key role of light emission in bioluminescence. Bioluminescence serves various functions in finding food and protecting the organisms from predators. With the routine biotechnological application of bioluminescence, it is recognized to be essential for many medical, commercial and other general technological advances. Therefore, the prediction and characterization of BLPs are significant and can help to explore more secrets about bioluminescence and promote the development of application of bioluminescence. Since the experimental methods are money and time-consuming for BLPs identification, bioinformatics tools have played important role in fast and accurate prediction of BLPs by combining their sequences information with machine learning methods. In this review, we summarized and compared the application of machine learning methods in the prediction of BLPs from different aspects. We wish that this review will provide insights and inspirations for researches on BLPs.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zi-Mei Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Hao Li
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou 646000, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
7
|
|
8
|
Some illuminating remarks on molecular genetics and genomics as well as drug development. Mol Genet Genomics 2020; 295:261-274. [PMID: 31894399 DOI: 10.1007/s00438-019-01634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Facing the explosive growth of biological sequences unearthed in the post-genomic age, one of the most important but also most difficult problems in computational biology is how to express a biological sequence with a discrete model or a vector, but still keep it with considerable sequence-order information or its special pattern. To deal with such a challenging problem, the ideas of "pseudo amino acid components" and "pseudo K-tuple nucleotide composition" have been proposed. The ideas and their approaches have further stimulated the birth for "distorted key theory", "wenxing diagram", and substantially strengthening the power in treating the multi-label systems, as well as the establishment of the famous "5-steps rule". All these logic developments are quite natural that are very useful not only for theoretical scientists but also for experimental scientists in conducting genetics/genomics analysis and drug development. Presented in this review paper are also their future perspectives; i.e., their impacts will become even more significant and propounding.
Collapse
|
9
|
Shao YT, Liu XX, Lu Z, Chou KC. pLoc_Deep-mHum: Predict Subcellular Localization of Human Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.127042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Shao Y, Chou KC. pLoc_Deep-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.126034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Chou KC. Impacts of Pseudo Amino Acid Components and 5-steps Rule to Proteomics and Proteome Analysis. Curr Top Med Chem 2019; 19:2283-2300. [DOI: 10.2174/1568026619666191018100141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 01/27/2023]
Abstract
Stimulated by the 5-steps rule during the last decade or so, computational proteomics has achieved remarkable progresses in the following three areas: (1) protein structural class prediction; (2) protein subcellular location prediction; (3) post-translational modification (PTM) site prediction. The results obtained by these predictions are very useful not only for an in-depth study of the functions of proteins and their biological processes in a cell, but also for developing novel drugs against major diseases such as cancers, Alzheimer’s, and Parkinson’s. Moreover, since the targets to be predicted may have the multi-label feature, two sets of metrics are introduced: one is for inspecting the global prediction quality, while the other for the local prediction quality. All the predictors covered in this review have a userfriendly web-server, through which the majority of experimental scientists can easily obtain their desired data without the need to go through the complicated mathematics.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
12
|
Chou KC. Advances in Predicting Subcellular Localization of Multi-label Proteins and its Implication for Developing Multi-target Drugs. Curr Med Chem 2019; 26:4918-4943. [PMID: 31060481 DOI: 10.2174/0929867326666190507082559] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
13
|
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
14
|
Chou KC. Proposing Pseudo Amino Acid Components is an Important Milestone for Proteome and Genome Analyses. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09910-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
|
16
|
Niu B, Liang C, Lu Y, Zhao M, Chen Q, Zhang Y, Zheng L, Chou KC. Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks. Genomics 2019; 112:837-847. [PMID: 31150762 DOI: 10.1016/j.ygeno.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glioma is the most lethal nervous system cancer. Recent studies have made great efforts to study the occurrence and development of glioma, but the molecular mechanisms are still unclear. This study was designed to reveal the molecular mechanisms of glioma based on protein-protein interaction network combined with machine learning methods. Key differentially expressed genes (DEGs) were screened and selected by using the protein-protein interaction (PPI) networks. RESULTS As a result, 19 genes between grade I and grade II, 21 genes between grade II and grade III, and 20 genes between grade III and grade IV. Then, five machine learning methods were employed to predict the gliomas stages based on the selected key genes. After comparison, Complement Naive Bayes classifier was employed to build the prediction model for grade II-III with accuracy 72.8%. And Random forest was employed to build the prediction model for grade I-II and grade III-VI with accuracy 97.1% and 83.2%, respectively. Finally, the selected genes were analyzed by PPI networks, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the results improve our understanding of the biological functions of select DEGs involved in glioma growth. We expect that the key genes expressed have a guiding significance for the occurrence of gliomas or, at the very least, that they are useful for tumor researchers. CONCLUSION Machine learning combined with PPI networks, GO and KEGG analyses of selected DEGs improve our understanding of the biological functions involved in glioma growth.
Collapse
Affiliation(s)
- Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Chaofeng Liang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Manman Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yuhui Zhang
- Renji Hospital, Medical School, Shanghai Jiaotong University, 160 Pujian Rd, New Pudong District, Shanghai 200127, China; Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Radiology, Shanghai First People's Hospital, Baoshan Branch, Shanghai 200940, China.
| | - Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
17
|
Kabir M, Ahmad S, Iqbal M, Hayat M. iNR-2L: A two-level sequence-based predictor developed via Chou's 5-steps rule and general PseAAC for identifying nuclear receptors and their families. Genomics 2019; 112:276-285. [PMID: 30779939 DOI: 10.1016/j.ygeno.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Nuclear receptor proteins (NRPs) perform a vital role in regulating gene expression. With the rapidity growth of NRPs in post-genomic era, it is highly recommendable to identify NRPs and their sub-families accurately from their primary sequences. Several conventional methods have been used for discrimination of NRPs and their sub-families, but did not achieve considerable results. In a sequel, a two-level new computational model "iNR-2 L" is developed. Two discrete methods namely: Dipeptide Composition and Tripeptide Composition were used to formulate NRPs sequences. Further, both the descriptor spaces were merged to construct hybrid space. Furthermore, feature selection technique minimum redundancy and maximum relevance was employed in order to select salient features as well as reduce the noise and redundancy. The experiential outcomes exhibited that the proposed model iNR-2 L achieved outstanding results. It is anticipated that the proposed computational model might be a practical and effective tool for academia and research community.
Collapse
Affiliation(s)
- Muhammad Kabir
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Saeed Ahmad
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Muhammad Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan.
| |
Collapse
|
18
|
PSBinder: A Web Service for Predicting Polystyrene Surface-Binding Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5761517. [PMID: 29445741 PMCID: PMC5763211 DOI: 10.1155/2017/5761517] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/02/2017] [Indexed: 11/18/2022]
Abstract
Polystyrene surface-binding peptides (PSBPs) are useful as affinity tags to build a highly effective ELISA system. However, they are also a quite common type of target-unrelated peptides (TUPs) in the panning of phage-displayed random peptide library. As TUP, PSBP will mislead the analysis of panning results if not identified. Therefore, it is necessary to find a way to quickly and easily foretell if a peptide is likely to be a PSBP or not. In this paper, we describe PSBinder, a predictor based on SVM. To our knowledge, it is the first web server for predicting PSBP. The SVM model was built with the feature of optimized dipeptide composition and 87.02% (MCC = 0.74; AUC = 0.91) of peptides were correctly classified by fivefold cross-validation. PSBinder can be used to exclude highly possible PSBP from biopanning results or to find novel candidates for polystyrene affinity tags. Either way, it is valuable for biotechnology community.
Collapse
|
19
|
Yu B, Lou L, Li S, Zhang Y, Qiu W, Wu X, Wang M, Tian B. Prediction of protein structural class for low-similarity sequences using Chou’s pseudo amino acid composition and wavelet denoising. J Mol Graph Model 2017; 76:260-273. [DOI: 10.1016/j.jmgm.2017.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022]
|
20
|
Zhang J, Chai H, Yang G, Ma Z. Prediction of bioluminescent proteins by using sequence-derived features and lineage-specific scheme. BMC Bioinformatics 2017; 18:294. [PMID: 28583090 PMCID: PMC5460367 DOI: 10.1186/s12859-017-1709-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Bioluminescent proteins (BLPs) widely exist in many living organisms. As BLPs are featured by the capability of emitting lights, they can be served as biomarkers and easily detected in biomedical research, such as gene expression analysis and signal transduction pathways. Therefore, accurate identification of BLPs is important for disease diagnosis and biomedical engineering. In this paper, we propose a novel accurate sequence-based method named PredBLP (Prediction of BioLuminescent Proteins) to predict BLPs. Results We collect a series of sequence-derived features, which have been proved to be involved in the structure and function of BLPs. These features include amino acid composition, dipeptide composition, sequence motifs and physicochemical properties. We further prove that the combination of four types of features outperforms any other combinations or individual features. To remove potential irrelevant or redundant features, we also introduce Fisher Markov Selector together with Sequential Backward Selection strategy to select the optimal feature subsets. Additionally, we design a lineage-specific scheme, which is proved to be more effective than traditional universal approaches. Conclusion Experiment on benchmark datasets proves the robustness of PredBLP. We demonstrate that lineage-specific models significantly outperform universal ones. We also test the generalization capability of PredBLP based on independent testing datasets as well as newly deposited BLPs in UniProt. PredBLP is proved to be able to exceed many state-of-art methods. A web server named PredBLP, which implements the proposed method, is free available for academic use. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1709-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China.,School of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan Province, 464000, People's Republic of China
| | - Haiting Chai
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China
| | - Guifu Yang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China
| | - Zhiqiang Ma
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China.
| |
Collapse
|
21
|
Liu B, Wu H, Chou KC. Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ns.2017.94007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Xiao X, Hui M, Liu Z. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC. J Membr Biol 2016; 249:845-854. [DOI: 10.1007/s00232-016-9935-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
23
|
Fan GL, Liu YL, Wang H. Identification of thermophilic proteins by incorporating evolutionary and acid dissociation information into Chou's general pseudo amino acid composition. J Theor Biol 2016; 407:138-142. [DOI: 10.1016/j.jtbi.2016.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
|
24
|
Li FM, Wang XQ. Identifying anticancer peptides by using improved hybrid compositions. Sci Rep 2016; 6:33910. [PMID: 27670968 PMCID: PMC5037382 DOI: 10.1038/srep33910] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the main causes of threats to human life. Identification of anticancer peptides is important for developing effective anticancer drugs. In this paper, we developed an improved predictor to identify the anticancer peptides. The amino acid composition (AAC), the average chemical shifts (acACS) and the reduced amino acid composition (RAAC) were selected to predict the anticancer peptides by using the support vector machine (SVM). The overall prediction accuracy reaches to 93.61% in jackknife test. The results indicated that the combined parameter was helpful to the prediction for anticancer peptides.
Collapse
Affiliation(s)
- Feng-Min Li
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiao-Qian Wang
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
25
|
Feng Z, Hu X, Jiang Z, Song H, Ashraf MA. The recognition of multi-class protein folds by adding average chemical shifts of secondary structure elements. Saudi J Biol Sci 2016; 23:189-97. [PMID: 26980999 PMCID: PMC4778582 DOI: 10.1016/j.sjbs.2015.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/28/2022] Open
Abstract
The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Xiuzhen Hu
- Department of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Zhuo Jiang
- Department of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Hangyu Song
- Department of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Muhammad Aqeel Ashraf
- Water Research Unit, Faculty of Science and Natural Resources, University Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
26
|
Nath A, Subbiah K. Unsupervised learning assisted robust prediction of bioluminescent proteins. Comput Biol Med 2016; 68:27-36. [DOI: 10.1016/j.compbiomed.2015.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/27/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
|
27
|
Sharma R, Dehzangi A, Lyons J, Paliwal K, Tsunoda T, Sharma A. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. IEEE Trans Nanobioscience 2015; 14:915-26. [DOI: 10.1109/tnb.2015.2500186] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Ahmad S, Kabir M, Hayat M. Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 122:165-174. [PMID: 26233307 DOI: 10.1016/j.cmpb.2015.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
Heat Shock Proteins (HSPs) are the substantial ingredients for cell growth and viability, which are found in all living organisms. HSPs manage the process of folding and unfolding of proteins, the quality of newly synthesized proteins and protecting cellular homeostatic processes from environmental stress. On the basis of functionality, HSPs are categorized into six major families namely: (i) HSP20 or sHSP (ii) HSP40 or J-proteins types (iii) HSP60 or GroEL/ES (iv) HSP70 (v) HSP90 and (vi) HSP100. Identification of HSPs family and sub-family through conventional approaches is expensive and laborious. It is therefore, highly desired to establish an automatic, robust and accurate computational method for prediction of HSPs quickly and reliably. Regard, a computational model is developed for the prediction of HSPs family. In this model, protein sequences are formulated using three discrete methods namely: Split Amino Acid Composition, Pseudo Amino Acid Composition, and Dipeptide Composition. Several learning algorithms are utilized to choice the best one for high throughput computational model. Leave one out test is applied to assess the performance of the proposed model. The empirical results showed that support vector machine achieved quite promising results using Dipeptide Composition feature space. The predicted outcomes of proposed model are 90.7% accuracy for HSPs dataset and 97.04% accuracy for J-protein types, which are higher than existing methods in the literature so far.
Collapse
Affiliation(s)
- Saeed Ahmad
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Kabir
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan.
| |
Collapse
|
29
|
Fan GL, Zhang XY, Liu YL, Nang Y, Wang H. DSPMP: Discriminating secretory proteins of malaria parasite by hybridizing different descriptors of Chou's pseudo amino acid patterns. J Comput Chem 2015; 36:2317-27. [PMID: 26484844 DOI: 10.1002/jcc.24210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 12/28/2022]
Abstract
Identification of the proteins secreted by the malaria parasite is important for developing effective drugs and vaccines against infection. Therefore, we developed an improved predictor called "DSPMP" (Discriminating Secretory Proteins of Malaria Parasite) to identify the secretory proteins of the malaria parasite by integrating several vector features using support vector machine-based methods. DSPMP achieved an overall predictive accuracy of 98.61%, which is superior to that of the existing predictors in this field. We show that our method is capable of identifying the secretory proteins of the malaria parasite and found that the amino acid composition for buried and exposed sequences, denoted by AAC(b/e), was the most important feature for constructing the predictor. This article not only introduces a novel method for detecting the important features of sample proteins related to the malaria parasite but also provides a useful tool for tackling general protein-related problems. The DSPMP webserver is freely available at http://202.207.14.87:8032/fuwu/DSPMP/index.asp.
Collapse
Affiliation(s)
- Guo-Liang Fan
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Xiao-Yan Zhang
- Department of Physics, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yan-Ling Liu
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Yi Nang
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hui Wang
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
30
|
Liu B, Fang L, Liu F, Wang X, Chou KC. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J Biomol Struct Dyn 2015; 34:223-35. [DOI: 10.1080/07391102.2015.1014422] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. MOLECULAR BIOSYSTEMS 2015; 11:2620-34. [DOI: 10.1039/c5mb00155b] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the avalanche of DNA/RNA sequences generated in the post-genomic age, it is urgent to develop automated methods for analyzing the relationship between the sequences and their functions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics
- School of Sciences
- and Center for Genomics and Computational Biology
- Hebei United University
- Tangshan 063000
| | - Hao Lin
- Gordon Life Science Institute
- Boston
- USA
- Key Laboratory for Neuro-Information of Ministry of Education
- Center of Bioinformatics
| | - Kuo-Chen Chou
- Department of Physics
- School of Sciences
- and Center for Genomics and Computational Biology
- Hebei United University
- Tangshan 063000
| |
Collapse
|
32
|
Chen J, Tang YY, Chen CLP, Fang B, Lin Y, Shang Z. Multi-Label Learning With Fuzzy Hypergraph Regularization for Protein Subcellular Location Prediction. IEEE Trans Nanobioscience 2014; 13:438-47. [DOI: 10.1109/tnb.2014.2341111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Xu R, Zhou J, Liu B, He Y, Zou Q, Wang X, Chou KC. Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J Biomol Struct Dyn 2014; 33:1720-30. [PMID: 25252709 DOI: 10.1080/07391102.2014.968624] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
DNA-binding proteins are crucial for various cellular processes and hence have become an important target for both basic research and drug development. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to establish an automated method for rapidly and accurately identifying DNA-binding proteins based on their sequence information alone. Owing to the fact that all biological species have developed beginning from a very limited number of ancestral species, it is important to take into account the evolutionary information in developing such a high-throughput tool. In view of this, a new predictor was proposed by incorporating the evolutionary information into the general form of pseudo amino acid composition via the top-n-gram approach. It was observed by comparing the new predictor with the existing methods via both jackknife test and independent data-set test that the new predictor outperformed its counterparts. It is anticipated that the new predictor may become a useful vehicle for identifying DNA-binding proteins. It has not escaped our notice that the novel approach to extract evolutionary information into the formulation of statistical samples can be used to identify many other protein attributes as well.
Collapse
Affiliation(s)
- Ruifeng Xu
- a School of Computer Science and Technology , Harbin Institute of Technology Shenzhen Graduate School, HIT Campus Shenzhen University Town , Xili, Shenzhen 518055 , Guangdong , China
| | | | | | | | | | | | | |
Collapse
|
34
|
Hayat M, Iqbal N. Discriminating protein structure classes by incorporating Pseudo Average Chemical Shift to Chou's general PseAAC and Support Vector Machine. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 116:184-192. [PMID: 24997484 DOI: 10.1016/j.cmpb.2014.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Proteins control all biological functions in living species. Protein structure is comprised of four major classes including all-α class, all-β class, α+β, and α/β. Each class performs different function according to their nature. Owing to the large exploration of protein sequences in the databanks, the identification of protein structure classes is difficult through conventional methods with respect to cost and time. Looking at the importance of protein structure classes, it is thus highly desirable to develop a computational model for discriminating protein structure classes with high accuracy. For this purpose, we propose a silco method by incorporating Pseudo Average Chemical Shift and Support Vector Machine. Two feature extraction schemes namely Pseudo Amino Acid Composition and Pseudo Average Chemical Shift are used to explore valuable information from protein sequences. The performance of the proposed model is assessed using four benchmark datasets 25PDB, 1189, 640 and 399 employing jackknife test. The success rates of the proposed model are 84.2%, 85.0%, 86.4%, and 89.2%, respectively on the four datasets. The empirical results reveal that the performance of our proposed model compared to existing models is promising in the literature so far and might be useful for future research.
Collapse
Affiliation(s)
- Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan.
| | - Nadeem Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| |
Collapse
|
35
|
acACS: improving the prediction accuracy of protein subcellular locations and protein classification by incorporating the average chemical shifts composition. ScientificWorldJournal 2014; 2014:864135. [PMID: 25110749 PMCID: PMC4106170 DOI: 10.1155/2014/864135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/15/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022] Open
Abstract
The chemical shift is sensitive to changes in the local environments and can report the structural changes. The structure information of a protein can be represented by the average chemical shifts (ACS) composition, which has been broadly applied for enhancing the prediction accuracy in protein subcellular locations and protein classification. However, different kinds of ACS composition can solve different problems. We established an online web server named acACS, which can convert secondary structure into average chemical shift and then compose the vector for representing a protein by using the algorithm of auto covariance. Our solution is easy to use and can meet the needs of users.
Collapse
|
36
|
iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BIOMED RESEARCH INTERNATIONAL 2014; 2014:623149. [PMID: 24967386 PMCID: PMC4055483 DOI: 10.1155/2014/623149] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/17/2022]
Abstract
In eukaryotic genes, exons are generally interrupted by introns. Accurately removing introns and joining exons together are essential processes in eukaryotic gene expression. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapid and effective detection of splice sites that play important roles in gene structure annotation and even in RNA splicing. Although a series of computational methods were proposed for splice site identification, most of them neglected the intrinsic local structural properties. In the present study, a predictor called “iSS-PseDNC” was developed for identifying splice sites. In the new predictor, the sequences were formulated by a novel feature-vector called “pseudo dinucleotide composition” (PseDNC) into which six DNA local structural properties were incorporated. It was observed by the rigorous cross-validation tests on two benchmark datasets that the overall success rates achieved by iSS-PseDNC in identifying splice donor site and splice acceptor site were 85.45% and 87.73%, respectively. It is anticipated that iSS-PseDNC may become a useful tool for identifying splice sites and that the six DNA local structural properties described in this paper may provide novel insights for in-depth investigations into the mechanism of RNA splicing.
Collapse
|
37
|
Propensity scores for prediction and characterization of bioluminescent proteins from sequences. PLoS One 2014; 9:e97158. [PMID: 24828431 PMCID: PMC4020813 DOI: 10.1371/journal.pone.0097158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/15/2014] [Indexed: 01/19/2023] Open
Abstract
Bioluminescent proteins (BLPs) are a class of proteins with various mechanisms of light emission such as bioluminescence and fluorescence from luminous organisms. While valuable for commercial and medical applications, identification of BLPs, including luciferases and fluorescent proteins (FPs), is rather challenging, owing to their high variety of protein sequences. Moreover, characterization of BLPs facilitates mutagenesis analysis to enhance bioluminescence and fluorescence. Therefore, this study proposes a novel methodological approach to estimating the propensity scores of 400 dipeptides and 20 amino acids in order to design two prediction methods and characterize BLPs based on a scoring card method (SCM). The SCMBLP method for predicting BLPs achieves an accuracy of 90.83% for 10-fold cross-validation higher than existing support vector machine based methods and a test accuracy of 82.85%. A dataset consisting of 269 luciferases and 216 FPs is also established to design the SCMLFP prediction method, which achieves training and test accuracies of 97.10% and 96.28%, respectively. Additionally, four informative physicochemical properties of 20 amino acids are identified using the estimated propensity scores to characterize BLPs as follows: 1) high transfer free energy from inside to the protein surface, 2) high occurrence frequency of residues in the transmembrane regions of the protein, 3) large hydrophobicity scale from the native protein structure, and 4) high correlation coefficient (R = 0.921) between the amino acid compositions of BLPs and integral membrane proteins. Further analyzing BLPs reveals that luciferases have a larger value of R (0.937) than FPs (0.635), suggesting that luciferases tend to locate near the cell membrane location rather than FPs for convenient receipt of extracellular ions. Importantly, the propensity scores of dipeptides and amino acids and the identified properties facilitate efforts to predict, characterize, and apply BLPs, including luciferases, photoproteins, and FPs. The web server is available at http://iclab.life.nctu.edu.tw/SCMBLP/index.html.
Collapse
|
38
|
Xu Y, Wen X, Shao XJ, Deng NY, Chou KC. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci 2014; 15:7594-610. [PMID: 24857907 PMCID: PMC4057693 DOI: 10.3390/ijms15057594] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/04/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022] Open
Abstract
Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of the hydroxylation mechanism, but also for drug development, because protein hydroxylation is closely relevant to major diseases, such as stomach and lung cancers. With the avalanche of protein sequences generated in the post-genomic age, it is highly desired to develop computational methods to address this problem. In view of this, a new predictor called “iHyd-PseAAC” (identify hydroxylation by pseudo amino acid composition) was proposed by incorporating the dipeptide position-specific propensity into the general form of pseudo amino acid composition. It was demonstrated by rigorous cross-validation tests on stringent benchmark datasets that the new predictor is quite promising and may become a useful high throughput tool in this area. A user-friendly web-server for iHyd-PseAAC is accessible at http://app.aporc.org/iHyd-PseAAC/. Furthermore, for the convenience of the majority of experimental scientists, a step-by-step guide on how to use the web-server is given. Users can easily obtain their desired results by following these steps without the need of understanding the complicated mathematical equations presented in this paper just for its integrity.
Collapse
Affiliation(s)
- Yan Xu
- Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xin Wen
- Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiao-Jian Shao
- Department of Mathematics and Information Science, Binzhou University, Binzhou 256603, China.
| | - Nai-Yang Deng
- College of Science, China Agricultural University, Beijing 100083, China.
| | - Kuo-Chen Chou
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
39
|
Fan YN, Xiao X, Min JL, Chou KC. iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking. Int J Mol Sci 2014; 15:4915-37. [PMID: 24651462 PMCID: PMC3975431 DOI: 10.3390/ijms15034915] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called “iNR-Drug” was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.
Collapse
Affiliation(s)
- Yue-Nong Fan
- Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen 333046, Jiangxi, China.
| | - Xuan Xiao
- Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen 333046, Jiangxi, China.
| | - Jian-Liang Min
- Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen 333046, Jiangxi, China.
| | - Kuo-Chen Chou
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
40
|
Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition. J Theor Biol 2014; 344:12-8. [DOI: 10.1016/j.jtbi.2013.11.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/18/2013] [Accepted: 11/27/2013] [Indexed: 02/05/2023]
|
41
|
Du P, Gu S, Jiao Y. PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. Int J Mol Sci 2014; 15:3495-506. [PMID: 24577312 PMCID: PMC3975349 DOI: 10.3390/ijms15033495] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022] Open
Abstract
The general form pseudo-amino acid composition (PseAAC) has been widely used to represent protein sequences in predicting protein structural and functional attributes. We developed the program PseAAC-General to generate various different modes of Chou’s general PseAAC, such as the gene ontology mode, the functional domain mode, and the sequential evolution mode. This program allows the users to define their own desired modes. In every mode, 544 physicochemical properties of the amino acids are available for choosing. The computing efficiency is at least 100 times that of existing programs, which makes it able to facilitate the extensive studies on proteins and peptides. The PseAAC-General is freely available via SourceForge. It runs on both Linux and Windows.
Collapse
Affiliation(s)
- Pufeng Du
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Shuwang Gu
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yasen Jiao
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
42
|
iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int J Mol Sci 2014; 15:1746-66. [PMID: 24469313 PMCID: PMC3958819 DOI: 10.3390/ijms15021746] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 01/22/2023] Open
Abstract
Meiosis and recombination are the two opposite aspects that coexist in a DNA system. As a driving force for evolution by generating natural genetic variations, meiotic recombination plays a very important role in the formation of eggs and sperm. Interestingly, the recombination does not occur randomly across a genome, but with higher probability in some genomic regions called “hotspots”, while with lower probability in so-called “coldspots”. With the ever-increasing amount of genome sequence data in the postgenomic era, computational methods for effectively identifying the hotspots and coldspots have become urgent as they can timely provide us with useful insights into the mechanism of meiotic recombination and the process of genome evolution as well. To meet the need, we developed a new predictor called “iRSpot-TNCPseAAC”, in which a DNA sample was formulated by combining its trinucleotide composition (TNC) and the pseudo amino acid components (PseAAC) of the protein translated from the DNA sample according to its genetic codes. The former was used to incorporate its local or short-rage sequence order information; while the latter, its global and long-range one. Compared with the best existing predictor in this area, iRSpot-TNCPseAAC achieved higher rates in accuracy, Mathew’s correlation coefficient, and sensitivity, indicating that the new predictor may become a useful tool for identifying the recombination hotspots and coldspots, or, at least, become a complementary tool to the existing methods. It has not escaped our notice that the aforementioned novel approach to incorporate the DNA sequence order information into a discrete model may also be used for many other genome analysis problems. The web-server for iRSpot-TNCPseAAC is available at http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC. Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to obtain their desired result without the need to follow the complicated mathematical equations.
Collapse
|