1
|
Wang J, Fan Z, Liu J, Liu K, Yan C, Ye X, Deng X. Influence of stent strut and its associated injury on thrombus formation: A dissipative particle dynamics study. J Theor Biol 2024; 595:111929. [PMID: 39197677 DOI: 10.1016/j.jtbi.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Vascular stent intervention is a pivotal treatment for coronary atherosclerosis, though in-stent thrombosis remains a significant postoperative complication with an unclear underlying mechanism. This study utilized dissipated particle dynamics analysis to investigate the impact of stent and its injury on platelet behavior. The findings suggest that thrombus formation upstream of the stent is mainly initiated by upstream arterial injury, which leads to increased platelet accumulation and activation in that area. While thrombosis downstream of the stent is more directly influenced by the stent itself. The morphology and size of in-stent thrombosis can vary significantly due to the different contributions of the stent and underlying injuries. Additionally, the volume of in-stent thrombosis is affected by the extent of the injury and the viscosity of platelets, showing a notable increase in volume with the lengthening of the injury area and rise in platelet viscosity. This study provides a novel theoretical framework for optimizing stent placement strategies and structural designs by examining the effects of stent struts and associated injuries on thrombus formation.
Collapse
Affiliation(s)
- Jian Wang
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China.
| | - Jiashuai Liu
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Kailei Liu
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - ChaoJun Yan
- Cardiac Surgery Department, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Xia Ye
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Xiaoyan Deng
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Watson CT, Ward SC, Rizzo SA, Redaelli A, Manning KB. Influence of Hematocrit Level and Integrin α IIbβ III Function on vWF-Mediated Platelet Adhesion and Shear-Induced Platelet Aggregation in a Sudden Expansion. Cell Mol Bioeng 2024; 17:49-65. [PMID: 38435796 PMCID: PMC10902252 DOI: 10.1007/s12195-024-00796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Shear-mediated thrombosis is a clinically relevant phenomenon that underlies excessive arterial thrombosis and device-induced thrombosis. Red blood cells are known to mechanically contribute to physiological hemostasis through margination of platelets and vWF, facilitating the unfurling of vWF multimers, and increasing the fraction of thrombus-contacting platelets. Shear also plays a role in this phenomenon, increasing both the degree of margination and the near-wall forces experienced by vWF and platelets leading to unfurling and activation. Despite this, the contribution of red blood cells in shear-induced platelet aggregation has not been fully investigated-specifically the effect of elevated hematocrit has not yet been demonstrated. Methods Here, a microfluidic model of a sudden expansion is presented as a platform for investigating platelet adhesion at hematocrits ranging from 0 to 60% and shear rates ranging from 1000 to 10,000 s-1. The sudden expansion geometry models nonphysiological flow separation characteristic to mechanical circulatory support devices, and the validatory framework of the FDA benchmark nozzle. PDMS microchannels were fabricated and coated with human collagen. Platelets were fluorescently tagged, and blood was reconstituted at variable hematocrit prior to perfusion experiments. Integrin function of selected blood samples was inhibited by a blocking antibody, and platelet adhesion and aggregation over the course of perfusion was monitored. Results Increasing shear rates at physiological and elevated hematocrit levels facilitate robust platelet adhesion and formation of large aggregates. Shear-induced platelet aggregation is demonstrated to be dependent on both αIIbβIII function and the presence of red blood cells. Inhibition of αIIbβIII results in an 86.4% reduction in overall platelet adhesion and an 85.7% reduction in thrombus size at 20-60% hematocrit. Hematocrit levels of 20% are inadequate for effective platelet margination and subsequent vWF tethering, resulting in notable decreases in platelet adhesion at 5000 and 10,000 s-1 compared to 40% and 60%. Inhibition of αIIbβIII triggered dramatic reductions in overall thrombus coverage and large aggregate formation. Stability of platelets tethered by vWF are demonstrated to be αIIbβIII-dependent, as adhesion of single platelets treated with A2A9, an anti-αIIbβIII blocking antibody, is transient and did not lead to sustained thrombus formation. Conclusions This study highlights driving factors in vWF-mediated platelet adhesion that are relevant to clinical suppression of shear-induced thrombosis and in vitro assays of platelet adhesion. Primarily, increasing hematocrit promotes platelet margination, permitting shear-induced platelet aggregation through αIIbβIII-mediated adhesion at supraphysiological shear rates. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00796-0.
Collapse
Affiliation(s)
- Connor T. Watson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA USA
| | - Shane C. Ward
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA USA
| | - Stefano A. Rizzo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA USA
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA USA
| |
Collapse
|
3
|
Tsyu NG, Belyaev AV. Coarse-grained simulations of von Willebrand factor adsorption to collagen with consequent platelet recruitment. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3747. [PMID: 37366014 DOI: 10.1002/cnm.3747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
A multimeric glycoprotein of blood plasma-Von Willebrand factor (VWF)-mediates platelet adhesion to the fibrillar collagen of the subendothelial matrix if the blood vessel walls are damaged. The adsorption of VWF to collagen is thus essential for the initial stages of platelet hemostasis and thrombosis, as it plays a role of a molecular bridge between the injury and platelet adhesion receptors. Biomechanical complexity and sensitivity to the hydrodynamics are inherent in this system, therefore, modern computational methods supplement experimental studies of biophysical and molecular mechanisms that underlie platelet adhesion and aggregation in the blood flow. In the present paper, we propose a simulation framework for the VWF-mediated platelet adhesion to a plane wall with immobilized binding sites for VWF under the action of shear flow. VWF multimers and platelets are represented in the model by particles connected by elastic bonds and immersed in a viscous continuum fluid. This work complements the scientific field by taking into account the shape of a flattened platelet, but keeping a compromise between the detail of the description and the computational complexity of the model.
Collapse
Affiliation(s)
- Noel G Tsyu
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey V Belyaev
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Amaya-Espinosa H, Alexander-Katz A, Aponte-Santamaría C. The interplay between adsorption and aggregation of von Willebrand factor chains in shear flows. Biophys J 2023; 122:3831-3842. [PMID: 37537863 PMCID: PMC10560680 DOI: 10.1016/j.bpj.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Von Willebrand factor (VWF) is a giant extracellular glycoprotein that carries out a key adhesive function during primary hemostasis. Upon vascular injury and triggered by the shear of flowing blood, VWF establishes specific interactions with several molecular partners in order to anchor platelets to collagen on the exposed subendothelial surface. VWF also interacts with itself to form aggregates that, adsorbed on the surface, provide more anchor sites for the platelets. However, the interplay between elongation and subsequent exposure of cryptic binding sites, self-association, and adsorption on the surface remained unclear for VWF. In particular, the role of shear flow in these three processes is not well understood. In this study, we address these questions by using Brownian dynamics simulations at a coarse-grained level of resolution. We considered a system consisting of multiple VWF-like self-interacting chains that also interact with a surface under a shear flow. By a systematic analysis, we reveal that chain-chain and chain-surface interactions coexist nontrivially to modulate the spontaneous adsorption of VWF and the posterior immobilization of secondary tethered chains. Accordingly, these interactions tune VWF's extension and its propensity to form shear-assisted functional adsorbed aggregates. Our data highlight the collective behavior VWF self-interacting chains have when bound to the surface, distinct from that of isolated or flowing chains. Furthermore, we show that the extension and the exposure to solvent have a similar dependence on shear flow, at a VWF-monomer level of resolution. Overall, our results highlight the complex interplay that exists between adsorption, cohesion, and shear forces and their relevance for the adhesive hemostatic function of VWF.
Collapse
Affiliation(s)
- Helman Amaya-Espinosa
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia; Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
5
|
Belyaev AV, Fedotova IV. Molecular mechanisms of catch bonds and their implications for platelet hemostasis. Biophys Rev 2023; 15:1233-1256. [PMID: 37974999 PMCID: PMC10643804 DOI: 10.1007/s12551-023-01144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023] Open
Abstract
Adhesive molecular bonds between blood cells are essential for thrombosis and hemostasis as they provide means for platelet adhesion, aggregation, and signaling in flowing blood. According to the nowadays conventional definition, a "catch" bond is a type of non-covalent bio-molecular bridge, whose dissociation lifetime counter-intuitively increases with applied tensile force. Following recent experimental findings, such receptor-ligand protein bonds are vital to the blood cells involved in the prevention of bleeding (hemostatic response) and infection (immunity). In this review, we examine the up-to-date experimental discoveries and theoretical insights about catch bonds between the blood cells, their biomechanical principles at the molecular level, and their role in platelet thrombosis and hemostasis.
Collapse
Affiliation(s)
- Aleksey V. Belyaev
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| | - Irina V. Fedotova
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| |
Collapse
|
6
|
Islam K, Razizadeh M, Liu Y. Coarse-grained molecular simulation of extracellular vesicle squeezing for drug loading. Phys Chem Chem Phys 2023; 25:12308-12321. [PMID: 37082907 PMCID: PMC10337604 DOI: 10.1039/d3cp00387f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
In recent years, extracellular vesicles have become promising carriers as next-generation drug delivery platforms. Effective loading of exogenous cargos without compromising the extracellular vesicle membrane is a major challenge. Rapid squeezing through nanofluidic channels is a widely used approach to load exogenous cargoes into the EV through the nanopores generated temporarily on the membrane. However, the exact mechanism and dynamics of nanopore opening, as well as cargo loading through nanopores during the squeezing process remains unknown and it is impossible to visualize or quantify it experimentally due to the small size of the EV and the fast transient process. This paper developed a systemic algorithm to simulate nanopore formation and predict drug loading during extracellular vesicle (EV) squeezing by leveraging the power of coarse-grain (CG) molecular dynamics simulations with fluid dynamics. The EV CG beads are coupled with implicit the fluctuating lattice Boltzmann solvent. The effects of EV properties and various squeezing test parameters, such as EV size, flow velocity, channel width, and length, on pore formation and drug loading efficiency are analyzed. Based on the simulation results, a phase diagram is provided as a design guide for nanochannel geometry and squeezing velocity to generate pores on the membrane without damaging the EV. This method can be utilized to optimize the nanofluidic device configuration and flow setup to obtain desired drug loading into EVs.
Collapse
Affiliation(s)
- Khayrul Islam
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Meghdad Razizadeh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
7
|
Belyaev AV, Kushchenko YK. Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations. Biomech Model Mechanobiol 2023; 22:785-808. [PMID: 36627458 PMCID: PMC9838538 DOI: 10.1007/s10237-022-01681-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Platelet adhesion and activation are essential initial processes of arterial and microvascular hemostasis, where high hydrodynamic forces from the bloodflow impede coagulation. The process relies on von Willebrand factor (VWF)-a linear multimeric protein of blood plasma plays a pivotal role in mechanochemical regulation of shear-induced platelet aggregation (SIPA). Adhesive interactions between VWF and glycoprotein receptors GPIb are crucial for platelet recruitment under high shear stress in fluid. Recent advances in experimental studies revealed that mechanical tension on the extracellular part of GPIb may trigger a cascade of biochemical reactions in platelets leading to activation of integrins [Formula: see text] (also known as GPIIb/IIIa) and strengthening of the adhesion. The present paper is aimed at investigation of this process by three-dimensional computer simulations of platelet adhesion to surface-grafted VWF multimers in pressure-driven flow of platelet-rich plasma. The simulations demonstrate that GPIb-mediated mechanotransduction is a feasible way of platelet activation and stabilization of platelet aggregates under high shear stress. Quantitative understanding of mechanochemical processes involved in SIPA would potentially promote the discovery of new anti-platelet medication and the development of multiscale numerical models of platelet thrombosis and hemostasis.
Collapse
Affiliation(s)
- Aleksey V. Belyaev
- grid.14476.300000 0001 2342 9668Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskiye Gory, Moscow, Russia 119991
| | - Yulia K. Kushchenko
- grid.14476.300000 0001 2342 9668Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskiye Gory, Moscow, Russia 119991
| |
Collapse
|
8
|
Stirnemann G. Recent Advances and Emerging Challenges in the Molecular Modeling of Mechanobiological Processes. J Phys Chem B 2022; 126:1365-1374. [PMID: 35143190 DOI: 10.1021/acs.jpcb.1c10715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many biological processes result from the effect of mechanical forces on macromolecular structures and on their interactions. In particular, the cell shape, motion, and differentiation directly depend on mechanical stimuli from the extracellular matrix or from neighboring cells. The development of experimental techniques that can measure and characterize the tiny forces acting at the cellular scale and down to the single-molecule, biomolecular level has enabled access to unprecedented details about the involved mechanisms. However, because the experimental observables often do not provide a direct atomistic picture of the corresponding phenomena, particle-based simulations performed at various scales are instrumental in complementing these experiments and in providing a molecular interpretation. Here, we will review the recent key achievements in the field, and we will highlight and discuss the many technical challenges these simulations are facing, as well as suggest future directions for improvement.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
9
|
Languin-Cattoën O, Laborie E, Yurkova DO, Melchionna S, Derreumaux P, Belyaev AV, Sterpone F. Exposure of Von Willebrand Factor Cleavage Site in A1A2A3-Fragment under Extreme Hydrodynamic Shear. Polymers (Basel) 2021; 13:polym13223912. [PMID: 34833213 PMCID: PMC8625202 DOI: 10.3390/polym13223912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the β-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Emeline Laborie
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Daria O. Yurkova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Simone Melchionna
- Dipartimento di Fisica, Università Sapienza, P.le A. Moro 5, 00185 Rome, Italy;
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Aleksey V. Belyaev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence: (A.V.B.); (F.S.)
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
- Correspondence: (A.V.B.); (F.S.)
| |
Collapse
|
10
|
Nikfar M, Razizadeh M, Paul R, Muzykantov V, Liu Y. A numerical study on drug delivery via multiscale synergy of cellular hitchhiking onto red blood cells. NANOSCALE 2021; 13:17359-17372. [PMID: 34590654 PMCID: PMC10169096 DOI: 10.1039/d1nr04057j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Red blood cell (RBC)-hitchhiking, in which different nanocarriers (NCs) shuttle on the erythrocyte membrane and disassociate from RBCs to the first organ downstream of the intravenous injection spot, has recently been introduced as a solution to enhance target site uptake. Several experimental studies have already approved that cellular hitchhiking onto the RBC membrane can improve the delivery of a wide range of NCs in mice, pigs, and ex vivo human lungs. In these studies, the impact of NC size, NC surface chemistry, and shear rate on the delivery process and biodistribution has been widely explored. To shed light on the underlying physics in this type of drug delivery system, we present a computational platform in the context of the lattice Boltzmann method, spring connected network, and frictional immersed boundary method. The proposed algorithm simulates nanoparticle (NP) dislodgment from the RBC surface in shear flow and biomimetic microfluidic channels. The numerical simulations are performed for various NP sizes and RBC-NP adhesion strengths. In shear flow, NP detachment increases upon increasing the shear rate. RBC-RBC interaction can also significantly boost shear-induced particle detachment. Larger NPs have a higher propensity to be disconnected from the RBC surface. The results illustrate that changing the interaction between the NPs and RBCs can control the desorption process. All the findings agree with in vivo and in vitro experimental observations. We believe that the proposed setup can be exploited as a predictive tool to estimate optimum parameters in NP-bound RBCs for better targeting procedures in tissue microvasculature.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Vladimir Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
11
|
Nikfar M, Razizadeh M, Paul R, Zhou Y, Liu Y. Numerical simulation of intracellular drug delivery via rapid squeezing. BIOMICROFLUIDICS 2021; 15:044102. [PMID: 34367404 PMCID: PMC8331209 DOI: 10.1063/5.0059165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Intracellular drug delivery by rapid squeezing is one of the most recent and simple cell membrane disruption-mediated drug encapsulation approaches. In this method, cell membranes are perforated in a microfluidic setup due to rapid cell deformation during squeezing through constricted channels. While squeezing-based drug loading has been successful in loading drug molecules into various cell types, such as immune cells, cancer cells, and other primary cells, there is so far no comprehensive understanding of the pore opening mechanism on the cell membrane and the systematic analysis on how different channel geometries and squeezing speed influence drug loading. This article aims to develop a three-dimensional computational model to study the intracellular delivery for compound cells squeezing through microfluidic channels. The Lattice Boltzmann method, as the flow solver, integrated with a spring-connected network via frictional coupling, is employed to capture compound capsule dynamics over fast squeezing. The pore size is proportional to the local areal strain of triangular patches on the compound cell through mathematical correlations derived from molecular dynamics and coarse-grained molecular dynamics simulations. We quantify the drug concentration inside the cell cytoplasm by introducing a new mathematical model for passive diffusion after squeezing. Compared to the existing models, the proposed model does not have any empirical parameters that depend on operating conditions and device geometry. Since the compound cell model is new, it is validated by simulating a nucleated cell under a simple shear flow at different capillary numbers and comparing the results with other numerical models reported in literature. The cell deformation during squeezing is also compared with the pattern found from our compound cell squeezing experiment. Afterward, compound cell squeezing is modeled for different cell squeezing velocities, constriction lengths, and constriction widths. We reported the instantaneous cell center velocity, variations of axial and vertical cell dimensions, cell porosity, and normalized drug concentration to shed light on the underlying physics in fast squeezing-based drug delivery. Consistent with experimental findings in the literature, the numerical results confirm that constriction width reduction, constriction length enlargement, and average cell velocity promote intracellular drug delivery. The results show that the existence of the nucleus increases cell porosity and loaded drug concentration after squeezing. Given geometrical parameters and cell average velocity, the maximum porosity is achieved at three different locations: constriction entrance, constriction middle part, and outside the constriction. Our numerical results provide reasonable justifications for experimental findings on the influences of constriction geometry and cell velocity on the performance of cell-squeezing delivery. We expect this model can help design and optimize squeezing-based cargo delivery.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Belyaev AV. Intradimer forces and their implication for conformations of von Willebrand factor multimers. Biophys J 2021; 120:899-911. [PMID: 33524374 DOI: 10.1016/j.bpj.2021.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
The largest blood glycoprotein von Willebrand factor (VWF) responds to hydrodynamic stresses in the bloodstream with abrupt conformation changes, thus increasing its adhesivity to platelets and collagen. Arterial and microvascular hemostasis relies on mechanical and physicochemical properties of this macromolecule. Recently, it was discovered that the mechanical properties of VWF are controlled by multiple pH-dependent interactions with opposite trends within dimeric subunits. In this work, computer simulations reveal the effect of these intradimer forces on the conformation of VWF multimers in various hydrodynamic conditions. A coarse-grained computer model of VWF has been proposed and parameterized to give a good agreement with experimental data. The simulations suggest that strong attraction between VWF D4 domains increases the resistance to elongation under shear stress, whereas even intermediate attraction between VWF C domains contributes to VWF compaction in nonsheared fluid. It is hypothesized that the detailed subdimer dynamics of VWF concatamers may be one of the biophysical regulators of initial hemostasis and arterial thrombosis.
Collapse
Affiliation(s)
- Aleksey V Belyaev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia; IRC Mathematical modelling in Biomedicine, S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russia.
| |
Collapse
|